
CHAPTER 25 

Modelling of Wave-Current Boundary Layer in the Coastal Zone 

Leszek M. Kaczmarek & Rafal- Ostrowski x 

Abstract 

A 2-D numerical model of bottom turbulent boundary layer is described. Trie 
nonlinear effects associated with wave asymmetry and the nonlinear interaction of 
waves and currents are taken into account. The model provides a relatively simple 
procedure for determination of both instantaneous and time-averaged quantities 
of velocity and friction inside the boundary layer. 

1   Introduction 

The interaction of current and nonlinear waves is characteristic for a coastal zone 
behind and ahead of surf line because of the balance of wave asymmetry and 
effects bound with time-averaged current, called a return flow. Inter alia, it is 
possible that a time-averaged flow is offshore in the entire outer region while in 
the boundary layer, due to wave asymmetry, onshore flow occurs. 

The problem of interaction of waves and currents will be dealt with in two re- 
gions: in a potential oscillatory flow with superimposed current and in a boundary 
layer, with the continuity laws satisfied at the interface of the two regions. The 
solution in the boundary layer is conditioned by the knowledge of the flow in the 
outer region. 

The model takes into account nonlinear effects (i.e. wave asymmetry and those 
due to Uwco). Two steps have been proposed: 

• Step / — an iterative scheme providing the slip velocity, with Uwoo term 
due to energy dissipation in the boundary layer 

• Step // — a procedure yielding instantaneous and time-averaged velocity 
distributions in the boundary layer due to wave asymmetry. 
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2   Wave nonlinearity 

2.1   Wave input asymmetry 

Within nonlinear approximation the equation of motion in boundary layer has 
the form: 

du       du     dU     ,BU      d  (   du\ .,, 

ot       ox      ot        ox     oz \   oz) 

where u(z, t) i U(t) are the velocities inside and at the upper limit of boundary 
layer, respectively. 

Assuming that the velocity u does not depend on a variable x, one may ne- 
glect the convective terms and simultaneously take the nonlinearity into account 
by expressing the velocities of bottom oscillations U(t) in potential motion by 
nonlinear Stokes approximation. In this way the asymmetry of wave with respect 
to still water level, defined according to the order of nonlinear approximation, is 
considered. 

The linearized equation of motion (Eq. 1) in boundary layer reads: 

^»-V) = -T (2) ot p oz 

where r(z,t) is the shear stress and p is water density. 
To define time distribution of bottom friction velocity u/(t), the assumptions 

of Fredsoe's model (1981) formulated for sinusoidal wave and the suggestion of 
Fredsoe, Andersen & Silberg (1985) concerning the possibility of adaptation of 
the model for nonlinear wave case have been employed. 

Integrating Eq. 2 over the thickness of boundary layer S and assuming the 
logarithmic distribution of velocity one obtains the following differential equation: 

dzj   _        Wn2U(Lot) Zl(e
Zi - zx - 1) 1   dU 

d{iot) ~ kscoe^(zx - 1) + 1 ~ ez>(Zl - 1) + 1 U d(ujt) ^' 

in which: 

UK tA\ 

«/ 

and: 

S = ^(e" - 1) (5) 

where ks is Nikuradse roughness parameter and ks/30 is the theoretical bed level 
above z = 0. 

It is necessary to point out that the solution of Eq. 3 bases on an assumption 
that the boundary layer develops anew every time the flow reverses. This implies 
the neglect of memory effects. 

As a result of numerical solution of Eq. 3, the function Zi(t) is obtained and 
the temporal distributions of friction velocity Uf(t) and boundary layer thickness 
S(i) can be calculated thereafter on the basis of Equations 4 and 5. 
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The asymmetry of bottom velocity oscillations U(t) brings about non-uniform 
growth of boundary layer thickness in crest and trough phases, thus non-uniform 
friction. 

The presented computational procedure permits the determination of the char- 
acteristics of bottom friction (6 and uj) practically for any input U(t). 

Making use of the definition of friction velocity: 

«, = £ (6) 
one may determine the mean shear stress within wave period T: 

T 

Tc. =  7= 

b 

and the corresponding mean friction velocity: 

= \j P\us{t)\us{t)dt (7) 

ulc = fi (8) 

On the basis of computations one finds out that the mean friction velocity 
for an arbitrary nonlinear input is a positive value although the resultant water 
velocity at the top of the boundary layer is zero. In the computations carried out 
for a typical nonlinear wave in small scale laboratory tests, represented by 2nd 
or 3rd Stokes approximation, the quantity ujc has represented about 5% of the 
maximum shear stress u2,max, where Ufmax = ma,x[uj(t)]. 

The non-zero mean shear stress reflects the existence of a certain resultant 
current inside boundary layer, directed accordingly to wave propagation. 

All earlier attempts of theoretical description of the resultant current induced 
inside a boundary layer have led to the identification of wave-induced mass flux 
caused by the displacement in a boundary layer. The flux arises because a phase 
shift exists between the horizontal and vertical flow velocities at the top of the 
boundary layer in non-uniform water waves. This effect will be discussed in the 
next section. 

2.2 Discussion of vertical momentum transfer induced by the energy dissipated 
in a wave boundary layer 

The non-zero vertical velocity w in the boundary layer results from continuity 
equation in the solution of Longuet-Higgins (1953) for the laminar boundary 
layer. The existence of this velocity indicates that an additional mean (over wave 
period) shear stress uw is generated inside the boundary layer. This stress attains 
the maximum value at the upper limit of the layer. It causes the disturbances 
in the region of potential flow, because there is no vertical momentum exchange 
represented by the term uw in linear wave motion. The approach of Longuet- 
Higgins implies that the form of vertical velocity w induced by the vorticity 
depends on the linear solution of the equation of motion. Moreover, it can be 
easily shown that the shear stress induced outside the boundary layer is oriented 
in the direction of wave propagation and the velocity is smaller by one order of 
magnitude than its linear counterpart. 
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In the case of turbulent motion, the determination of the additional shear stress 
generated inside the boundary layer requires, as in laminar motion, the knowledge 
of the linear solution of Eq. 2. This solution depends on the distribution of eddy 
viscosity vt. 

Using the continuity equation and assuming: 

- = --- (9) 
dx        cdt { ' 

where c is a phase velocity of wave, one may determine the additional vertical 
velocity !«„, outside the boundary layer: 

Woo = ~di   I (u-u)dz = ~   /   Ql(u-U)dz (10) 
k* ks 
30 30 

After taking into account Eq. 2 integrated over the boundary layer thickness, 
Eq. f 0 transforms into the form: 

T0              Uf\u}\ 
Woo  = =  (11) 

cp c 

The considerations of Deigaard h Fredsoe (1989) reveal that the nonlinearities 
bound with the generation of an additional vertical velocity Woo at the top of 
boundary layer i.e. the nonlinearities linked with the terms UW are closely asso- 
ciated with the dissipation of wave energy. If the energy dissipation is neglected 
one may skip the additional stresses generated at the top of the boundary layer 
(the current induced by these stresses does not exist). 

Finally it is worthwhile pointing out that the stress uw^ equals zero at the 
bottom and reaches the maximum value at the top of boundary layer while the 
effects of wave asymmetry play the key role very close to the bottom. 

The above conclusions will be helpful for formulation of a model in Section 3. 

3   Wave and current interaction 

Integrating Eq. 2 over the thickness of boundary layer in the similar manner as 
in Section 2.1 and assuming T(S) = — pw?0 and TO = p\uf\uf, cf. Fredsoe (1984), 
one obtains the following differential equation: 

dzx        30*? [ f - u/0  (f - u/o) + uj0j      Zl{e»_Zl_1)1    dU 

d(ut) LokMie^izi - 1) + 1] e*i(*i - 1) + 1 U d(u>t) 

(12) 

(13) 

(14) 

in which: 
KU 

Z\ - 
Uf + Ufo 

and: 

6 = ^(e* - 1 
30v 
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In Equation 12 the nonlinear wave input U(t) can be involved, given by any 
Stokes approximation (for instance of 2nd or 3rd order). Both the current friction 
velocity ujo and the variable Z\ are unknown. Therefore the use of iteration 
method in the first stage of solution is proposed. 

Introducing the defect velocity ud(z, t) = u(z, t) — U(t) one has the equation of 
motion (Eq. 2) in the form: 

dud       d  (   dud\ 

-W = d~z r 57J (15) 

The following approximate initial condition is assumed: 

ud{z,to) = 0 (16) 

and the boundary conditions are: 

ud(^M) = ~U(cot) (17) 

ud{2Sm + ^,iot) = 0 (18) 

Eq. 15 is solved numerically by an implicit method involving the Crank - 
Nicholson scheme. Because the approximate initial condition (Eq. 16) has been 
assumed, the computations have had to cover the time corresponding to a few 
wave periods until the compatibility between ud(z, to-\- N -T) and ud[z, to + (N + 
1) • T] is reached. The number of required runs N depends on wave parameters 
and is three to five. 

Within the first stage of the solution, an interaction of a sinusoidal wave and 
the steady current is considered. A simple iterative procedure presented by Kacz- 
marek & Ostrowski (1991) ensures the determination of the current friction ve- 
locity Ufo by matching the mean shear stress at the top of boundary layer. Mean 
velocities are also matched at the upper limit of boundary layer: the slip velocity 
calculated from equations governing in the outer region and the mean velocity at 
the top of boundary layer (see Appendix). 

Within the second stage of the solution, the temporal distribution of total 
friction velocity uj is determined on the basis of Eq. 12 for the quantity u/o 
computed previously and for nonlinear oscillatory input U(t). 

As a result of numerical solution of Eq. 12, the function Z\(ut) is obtained 
and the temporal distributions of friction velocity Uf(u>t) and boundary layer 
thickness S(ut) are determined from Eqs. 13 and 14, respectively. Then one can 
easily calculate the root mean square friction velocity ujc from Eqs. 7 and 8. 

The following distribution of eddy viscosity v% is assumed: 

ut(z) = KU}z for       |<z<^ + | 

ut(z) = KUJ (s-f + |j)        for        z > s-f + 30 

Let us notice that the above distribution is based on the friction velocity itf, 
which couples the effects of a current and wave asymmetry (determined within 
the two-stage approach). The equivalent friction velocity uj has been assumed 
as: 

iif = max(|u/(wi)|) (20) 
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while the mean boundary layer thickness the authors propose to determine as: 

6m = max(S1,S2) (21) 

where Si and 62 are the boundary layer thicknesses at the moments correspond- 
ing to maximum and minimum total (oscillatory and current) input U(t) + V, 
respectively. 

The equation of motion for the case of linear wave and current may be solved 
separately with separate boundary conditions. As it was pointed out by Kacz- 
marek & Ostrowski (1991), the assumption of time-independence of eddy viscos- 
ity vt in the boundary layer allows one to treat the combined wave and current 
motion by separate equations. The effect of nonlinear interaction between waves 
and a current is incorporated in the eddy viscosity, thus modelling of the turbulent 
viscosity vt. 

Hence the determination of intantaneous velocities u(z, i) may be the sum of 
the solution of equation of motion for wave only with the oscillatory velocity at 
the top of boundary layer as a boundary condition and the current described by 
equations: 

Oil 
KUjZ-~ = Ufc\Ufc\ (22) 

in the range < &s/30; <5m/4 + &s/30 > and 

in the range (Sm/4 + ks/30; Sm/2 + k3/30 >. 
The friction velocity Uf(ut), the boundary layer thickness 8{uit) and the root 

time-mean square friction velocity u;c are determined from the solution of Equa- 
tion 12. 

Integrating Eqs. 22, 23 and taking advantage of the condition uc{z — &s/30) = 0 
and the condition of continuity of uc at z = 8m/A + ks/30 one comes up with the 
formulas: 

««(*) = I^i/„£ (24) 
KUS 30 

in the range < &s/30; Sm/4 + fcs/30 > and 

Ufc\Ufc\ (z_^L_t±]+ Ufc\Ufc\ 1     '~t + 30 
««/(*? +1) V        4       30) Kuf 

*(*)=..- ;r;'M *-?-£+ —^^^^     w 
in the range (£m/4 + ks/30; Sm/2 + ks/30 >. 

The nonlinear wave on a steady current is the most interesting case from a prac- 
tical point of view, as the resultant shear stress direction controls the direction of 
the resultant flow in the combined boundary layer. Therefore the quantity u/c is 
of a great importance: if it is positive, the effects of wave asymmetry will prevail 
and the mean flow in the wave-current boundary layer will be directed shore- 
wards; if Ufc is negative, the steady current will prevail, and the resultant flow in 
the boundary layer will be directed seawards. For both situations the mean veloc- 
ity profile can be calculated from of Eq. 24 in the range < fcs/30; Sm/4 + ks/30 > 
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Fig. 1. Mean current velocity distributions in boundary layer as a result of 
interaction between nonlinear (solid line) or sinusoidal (dashed line) waves and 

a current 

and Eq. 25 in the range (<5m/4 + fcs/30; <5m/2 + fcs/30 > as in the case of nonlinear 
wave and current interaction the shear stress is assumed as constant in the range 
< fcs/30;5m/2 + fcs/30 >. The choice of the upper limit where the shear stress 
is constant is rather arbitrary but it follows an assumption made with respect to 
wave boundary layer. The authors have proposed the upper limit of this region 
as the ordinate corresponding to the level at which the maximum (or minimum) 
velocity profile reaches the free stream velocity. In accordance with Jonsson 
& Carlsen (1976) Sm/2 + fcs/30 is the most consistent measure. In the range 
(6m/2 + fcs/30; 2Sm + fcs/30 > the mean velocity profile is assumed to change lin- 
early upwards and to attain the value of slip velocity at the top of boundary layer. 
To analyse and distinguish the two major types of waves propagating against a 
current, sample computations have been carried out for the wave parameters cor- 
responding to the laboratory experiment by Jonsson & Carlsen (1976): h = 10 m, 
H = 5.3 m, T = 8.39 s. The wave has been approximated by Stokes theory of 2nd 
order. Additionally three currents of different slip velocities have been assumed: 
V = 0.20 m/s, V = 0.35 m/s and V = 0.70 m/s. The resultant mean velocity 
distributions (solid line) in comparison with the profiles obtained for sinusoidal 
wave and current interaction (dashed line) are depicted in Fig. 1. 

Having solved the equation of motion in boundary layer (Eq. 15) one may 
superimpose the instantaneous velocity profiles on the mean current distribution 
given by Eqs. 24 and 25 in the range < fcs/30;<5m/2 + fcs/30 >. In the range 
(Sm/2 + ks/30;26m + fcs/30 > the mean velocity profile changes linearly upwards 
and attains the value of slip velocity at the top of boundary layer. This mean 
current velocity is also superimposed on the instantaneous velocity distributions. 

4   Comparison between theory and measurements 

4.1   Velocity in wave-current bottom boundary layer 

Results of computations have been compared with the laboratory measurements 
by Hwung & Lin (1990). The experiments were carried out in a 9.5x0.7x0.3 m 
wave tank in which the bottom was adjusted on one-fifteenth slope. The velocities 
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Fig. 2. Measured (•) and calculated (-) water surface elevation (left) and wave 
input (right) 

of water were measured in 13 testing sections (including the boundary layer) 
situated along the flume. The comparison of computated data and measurements 
concern Case 2 of experimental wave parameters: initial depth h = 0.33 m, initial 
wave height H — 6.6 cm, wave period T = 1.23 s. 

Although it is possible to provide a complex solution in the outer region using 
one of the models dealing with return flow and in the boundary layer using the 
present approach, it is well worth focusing attention on the precision of solution 
in the boundary layer, being a major topic of the paper. Therefore the value of 
the slip velocity V has been taken from the measurements of Hwung & Lin (1990) 
to obtain the best fit of the boundary condition at the upper limit of boundary 
layer. 

The computed and measured instantaneuos velocity profiles have been com- 
pared for the testing section P4. The water surface elevation ((ut) and the wave 
input U(u)t) have been determined by the theory of Borgman and Chappelear 
(Stokes approximation of 3rd order), Fig. 2. The assumed time distributions of 
C(ujt) and U(iot) have been a little bit shifted to obtain the best fit with respect 
to the recorded ones. 

The instantaneous and mean velocity profiles have been computed using the 
procedure presented in the previous section. The parameter of equivalent rough- 
ness ks has been estimated as 2 mm. The instantaneous velocities are given in 
Fig. 3. The agreement of computed and measured instantaneous velocity profiles 
is satisfactory, especially at the moments corresponding to the best fit between 
recorded and assumed wave inputs U(u)t). 

The calculated mean velocity profiles for the testing sections PI, P3, P4 and 
P6 are given in Fig. 4. In general, they all correspond to the measured ones very 
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Fig. 3. Measured (•) and computed (-) instantaneous velocity distributions 

well. As the testing section PI lies in the range of application of Stokes 2nd order 
theory, the velocity has also been determined with this approximation (dashed 
line). 

4.2   Undertow combined with a bottom boundary layer 

The case of the wave propagating perpendicularly to the shoreline is considered. 
The oscillatory motion is accompanied by the undertow which compensates the 
mass flux carried shoreward by the breaking waves. The eddy viscosity model 
(Eqs. 19) in the bottom boundary layer is assumed. The eddy viscosity vtc in outer 
region is assumed vertically constant. As shown by Svendsen (1984) the inclu- 
sion of a conceptually realistic depth-variation of vtc has the effects of secondary 
importance when compared to the effects of incorporating alternative boundary 
conditions at the bottom. 

The vertical distribution of the mean current velocity in the outer region Uc(z) 
may be estimated by the following formula, cf. Svendsen (1984): 

Uc(z) a(z + hf +    2 
Um-V 1 

3a dtr)    (z+h) + V 

in which 

ai(x) 

Vic 

a\(x) 
dx («» + m) 

(26) 

(27) 

(28) 

where Um is the total mean mass flux below the wave trough, dtr is the distance 
between sea bottom and wave trough, uj, is mean square oscillatory horizontal 
velocity, fj is the set-up and g is the acceleration of gravity. The coordinate system 
begins at mean water level in this case and z axis is directed upwards. 
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Fig. 4. Measured (•) and computed (-) mean velocity profiles at testing sections 
PI, P3, Pi, P6 

The derivative of Eq. 26 reads: 

— = a (z + h) + I 2 —  adtr 
oz \        dtr 3 

(29) 

The shear stress at the lower limit of the undertow region is given by the 
formula: 

Te  =   pVtc 
dUc\ 

dz 
(30) 

Basically, the slip velocity V which corrensponds to the one at the top of the 
boundary layer is unknown and that is the reason of iteration in our solution 
of the problem. The quantity V must match the mean velocity at the top of 
boundary layer as well as re must be equal to the mean shear stress at the top 
of boundary layer calculated on the basis of instantaneous velocity profiles from 
Eq. 15. 

The comparisons between the measurements of Stive & Wind and Hansen & 
Svendsen experiments (Stive & Wind 1986) and the results obtained with the use 
of proposed method are shown in Figs. 5 and 6. 

As it is seen the slip velocity obtained with the use of presented procedure does 
not differ much from that which would exist if an assumption was made of re[z = 
— h) equal zero. This confirms experimental observations of Stive & Wind (1986). 
The above conclusion is of great importance for calculating the undertow velocity 
distribution in practical use. Thus assuming dUc(z)/dz\z=^h — 0 in Eq. 29 one 
obtains the simplified formula for slip velocity: 

V = Um - - a d]r (31) 
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In the computations ks was assumed as 1 mm for all sets of data after Svendsen 
& Hansen (1988).   

It is worthwhile remembering that the UW term originating from the organized 
orbital motion vanishes at the top of boundary layer, while the f/io^ associated 
with the energy dissipated in a wave boundary layer possesses a certain value, 
cf. the discussion in section 2.2. It is interesting to evaluate the contribution of 
this term to the undertow distribution near the bottom. To this end the Uwco 
term has been estimated from Eq. 11 and incorporated in the iterative scheme 
by superposition with the undertow shear stress at the top of boundary layer. 
The effect of UiVoo on the undertow distribution has been evaluated for one of 
the cases of Hansen & Svendsen's (1984) experiment and is depicted in Fig. 7 
(solid line) in comparison with the undertow profile without this effect (dashed 
line). Additionally, the undertow distribution computed with the assumption of 
zero undertow shear stress at the top of boundary layer is given (dotted line). As 
one could have expected, the contribution of Uwao is very small and the proposed 
formula for slip velocity (Eq. 31) obtained with the assumption of zero undertow 
shear stress at the bottom is sufficient for practical engineering purposes. 

5   Conclusions 

The theoretical model describing both instantaneous and time-averaged quan- 
tities of velocity and friction inside the turbulent boundary layer generated by 
the interaction of nonlinear wave and current has been presented. The treatment 
of the paper is restricted to the two-dimensional flow, in which the intersection 
angle between the direction of wave propagation and that of the steady current 
is either 0° or 180°. The model takes into account nonlinear effects, i.e. wave 
asymmetry and the effects associated with UWCQ. 

The results of computations of velocities inside the boundary layer under non- 
linear wave and current have been compared with the laboratory data of Hwung 
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h Lin's (1990) experiment.   The agreement of computed and measured, both 
instantaneous and mean, velocity profiles is satisfactory. 

The effect of Uw^, (associated with energy dissipation in the wave boundary 
layer) on the undertow distribution has been evaluated for one of the cases of 
Hansen & Svendsen's (1984) experiment. The contribution of this term has been 
found out to be very small. This implies that the proposed formula for slip ve- 
locity obtained with the assumption of zero undertow shear stress at the bottom 
is sufficient for practical engineering purposes. 

lix: Iterative scheme for undertow and bottom boundary layer 
1. Assumption of V 
2. Assumption of uj0 

3. Computation of ujc (Eqs. 12, 13, 7, 8) and re (Eq. 30) 
4. Verification whether Te = pu\c 

5a. IF NOT: correction of u/0 and GO TO item 3 
5b. IF YES: computation of uc(z) 
6. Verification whether V = uc(2Sm + fcs/30) 
7a. IF NOT: correction of V and GO TO item 2 
7b. IF YES: END 
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