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Abstract 

This paper describes a two-dimensional numercial 
model capable of simulating non-stationary flows. 
Special emphasis has been put on wave motion on and in 
porous structures, e.g. a rubble mound breakwater. Com- 
parisons of numerical simulations with analytical sol- 
utions and model test results have confirmed the appli- 
cability of this model for studies of waves and 
currents with regard to coastal structures. 

Introduction 

In the past coastal structures such as breakwaters 
mainly have been studied by means of physical modelling 
and simplified numerical calculations. Recent develop- 
ments in numerical techniques and methods, however, 
have implied that advanced numerical tools may be 
adopted in such studies. These numerical models dedi- 
cated to coastal structures are still in their infancy 
but likewise other branches of the hydraulics it is 
envisaged that numerical models will play an increasing 
role in future studies. 

In the present paper, a special 2D (x-z) version 
of Danish Hydraulic Institute's three-dimensional model 
is described. Details on the three dimensional model 
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adapted here are given in Rasmussen et al. The x-z ver- 
sion is designed especially for flow with regard to 
coastal structures and porous media. The numerical 
model is based on the Reynolds-averaged Navier-Stokes 
equations and the equation for conservation of mass. 
The equations are discretized into a finite difference 
scheme imposed on a rectangular, space-staggered grid. 
The finite difference equations are solved through a 
non-iterative ADI (Alternating Directions Implicit) 
technique using the artificial compressibility method. 

The energy loss due to both laminar and turbulent 
effects in porous media is included through the Forch- 
heimer equation. Furthermore, an inertia term has been 
included in the Forchheimer equation for the case of 
non-stationary flow. 

The free surface boundary in the model has been 
described applying a subgrid modelling in which the 
instantaneous position is calculated for each time step 
by use of linearized momentum equations and kinematic 
boundary conditions. This implies that the computa- 
tional domain varies from time step to time step. 

The numerical model is applicable to a large range 
of both dynamic and stationary flow problems with 
regards to coastal structures such as flows in break- 
waters consisting of layers with different porosity, 
flows through and/or beneath dams and stability of 
slopes etc. protected by impermeable surface layers 
likewise. 

Model simulations have been compared with both 
analytical solutions and physical model tests. 

Description of Flows in Porous Media 

It is common to apply a macroscopic point-of-view 
of a porosity layer by describing the porous matrix 
through characteristic constants. These properties are 
related both to the fluid and to the granular material 
in order to describe the penetration of the fluid. This 
implies that the basic problem is reduced to establish 
a relation between the pressure gradient and the bulk 
velocity. 

It can be argued as to whether this description is 
suitable or a microscopic point-of-view is needed. How- 
ever, such an approach would imply the necessity of a 
description of each stone with connected geometry and 
roughness factors. Furthermore, highly sophisticated 
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turbulence descriptions would be required. This leads 
to unrealistic demands to both model set-up for a simu- 
lation of flow in porous media and to the performance 
of the model itself, since the computational grid 
should be very fine in order to produce the required 
resolution of the geometry. 

A breakwater normally consists of three porous 
layers, i.e. core, filter, and armour layer. This 
implies the necessity of a porosity description, in 
which multiple layers with different properties can be 
specified. Physical model tests have shown the necess- 
ity of a description of the energy dissipation includ- 
ing both laminar and turbulent flow as well as energy 
dissipation due to dynamic effects. 

The relation between the bulk velocity, u, and the 
pore velocity, V, is given by 

u = V-n 

where n is the porosity. 

Forchheimer equation 

The Forchheimer equation consists of two terms 
expressing the hydraulic gradient due to both laminar 
and turbulent flow, respectively 

i = a-u + b-u2 

where, 
i is the hydraulic gradient 
a is the laminar dissipation factor 
b is the turbulent dissipation factor 

Since the linear term, a, accounts for the laminar 
effects, it depends on the viscosity. The non-linear 
term, b, represents the fully turbulent flow and is 
only dependent on the granular matrix material. 

Several relationships of a and b have been pro- 
posed in the literature, of which many have been based 
on a dimensional analysis. In the presented model the 
relationship proposed by Engelund has been adopted. The 
laminar and turbulent dissipation terms are described 
by the constants a and b: 
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b=  p (1-n) 

where 
v  is the viscosity of the fluid 
g is the gravity 
d is the stone diameter 
a is an empiric constant 
|8 is an empiric constant 

The formulation of the hydraulic gradient pres- 
ented above is only valid for a steady state flow. A 
model for unsteady flow would be to add a time depend- 
ent term to the Forchheimer expression 

i = a-u + b-u2 + c-^i 
at 

The factor c can be expressed in the following 
way: 

where j  is the inertia coefficient. 

Implementation of porosity description 

The model presented solves the Reynolds-averaged 
Navier-Stokes equations and the continuity equation in 
a staggered finite difference grid. The prognostic var- 
iables are the three velocity components together with 
the fluid pressure. The adopted porosity description is 
based on macro parameters of porosity, stone size and 
dissipation factors. The implementation of this macro 
scale porosity description involves two changes to the 
original balance equations 

1)   Redefinition of terms including velocity with 
respect to the influence of the porosity. 
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2) Adding of dissipation terms due to the microscopic 
flow resistance, i. e. flow between stones. The 
expression given by Forchheimer together with an 
additional term for the dynamic effect is applied. 

The continuity equation reads 

_J^.|E +vvi = o 2 at   J 
p-c 

where, 
p is the density 
cs is the speed of sound 
p is the excess pressure 
V is the pore velocity 

The momentum equation reads after introduction of 
the bulk velocity: 

du,        i     du< *i  _ 
dt n' dxi 

l.dP   - 9i-g.a.Ui - g.b.\UiWl  + ±'*{*p 
p dx±        

x x ' 1[   1       n dxA     dxj 

where E is the eddy viscosity 

Free Surface Description 

The applied free surface description of waves is 
presented in the following. The method is inspired by 
the VOF method proposed by Nichols and Hirt but splits 
the volume fraction into space increment fractions in 
the three coordinate directions, and can as such be 
considered as a surface tracking method rather than a 
volume tracking method. 

The presented description includes three dependent 
variables in addition to the velocity components and 
the fluid pressure. The variables noted a, $ and y rep- 
resent fractions of space increments in the x-, y- and 
z-direction, respectively, and thus describe the loc- 
ation of the free surface within the current grid cell, 
see Fig. 1. In the present model the instantaneous pos- 
ition of the water is directly calculated, which is the 
main difference to the VOF method. The fraction of vol- 
ume in each cell can be found as 
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V  =  a-p-y 

A free surface cell is identified as a cell con- 
taining a non-zero value of V and having at least one 
neighbouring cell that contains a zero value of V. 
Cells with zero V values are empty cells whereas cells 
with non-zero V values are treated as full or interior 
fluid cells. 

*Z 

Fig. 1 Description of the free surface by a frac- 
tion of volume of fluid technique. The corners 
represent pressure nodes. For the two-dimensional 
description /3 = dy. 

Briefly,  the basic procedure for 
solution in time consists of three steps: 

advancing a 

1) From the previous time step the dependent vari- 
ables form the basis for a new discretisation of 
the conservation of mass and the conservation of 
momentum equations. The system is solved implicit- 
ly taking into account closed boundaries, open 
boundaries and free surface boundaries. 

2) By use of the fractions calculated in the previous 
time step and on the basis of the newly found dep- 
endent variables the fractions a, (3 and y are com- 
puted . 

3) Finally, the fractions defining fluid regions must 
be used to update the fluid location taking into 
account the fluid in the adjacent cells and the 
boundaries of the computational domain. 

The theory presented in the following is developed 
in three dimensions. For reasons of simplicity the imp- 
lementation of the free surface into the three-dimen- 
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sional model has been done in two dimensions only - one 
horizontal and one vertical direction. 

The Continuity Equation 

In general the continuity equation reads 

where p is the density and u, v and w are the velocity 
components. 

In order to obtain a hyperbolicly dominated system 
the pressure is introduced into the continuity equation 
through an equation of state. 

1  dP+du+dZ+^i -  o 
pcs

2 ' 3c dx   dy   dz 

where c„ is the speed of sound and p the excess pres- 
sure. In the top layer of the computational domain a 
cell may not be full of fluid. To obtain the continuity 
equation for the computational cell at the surface an 
integration over the fraction of fluid volume is done: 

_l  f f  fV_i . |B+|" +|r+!?) dxdydz = 0 a  P Y {   {   { [pca
2    dt   dx   3y   BzJ 

The result of this integration is the continuity 
equation described in terms of the fractions of volume 

l  JP+^H+^Z+^i^ _ 0 
pcs

2 " 3t 3a 3p dy 

The compressibility of the fluid is expressed by 
the speed of sound cs. In order to make the coefficient 
matrix of the system diagonally dominanted, an artifi- 
cial value of c,  should be used. 

The Momentum Equations 

The conservation of momentum reads: 
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dt dx-j p   Sxj 2 dxA    dxj) 

where u is the velocity, P the total pressure, p the 
density, g the gravity and E the eddy viscosity of the 
fluid. 

For reasons of simplicity regarding the space and 
time discretisation only the linear momentum equations 
are modelled in the surface cells. 

The applied momentum equation for a cell contain- 
ing a free surface in the x-direction reads 

|H =-A d  (p+pgh) 
dt p ox 

where h is the local, vertical distance to the sur- 
face. 

Wave Boundary Condition 

In order to make simulations of wave impacts on 
coastal structures an open boundary condition forming 
propagating waves in the simulation area has been 
developed. The wave boundary is a mixture of the 
general Dirichlet type boundary conditions of velocity 
and level boundaries in the sense that both the level 
and the velocity are specified. This is presently done 
by applying a first order wave theory. 

Verifications and Simulations 

A number of simulations have been performed in 
order to verify and study the applicability of the 
model. A few examples are shown in the following: 

Simulation of Steady state Flow in Porous Media 

Verification of the porosity description in the 
case of steady state flow is carried out by a compari- 
son to experimentals made by Burcharth. The character- 
istic flow properties, such as the hydraulic gradient 
and the discharge velocity, have been measured in the 
case of penetration of water through three different 
gravel materials. For all three cases the principle 
model set-up both for the experimentals and for the 
numerical simulations is shown in Fig. 2. 
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Porosity layer Constant 

velocity boundary 

Fig. 2 Model set-up for steady state flow through 
a porous layer. 

The comparison is done in accordance with the fol- 
lowing description: 

1)   Since the hydraulic gradient is given as 

i = a-u + b-lul-u 

where, 
i 
a 
b 
u 

is the hydraulic gradient 
is the laminar dissipation factor 
is the turbulent dissipation factor 
is the bulk velocity 

a straight line is expected when (i/u) is plotted 
against u. The slope of the line equals b and the 
intersection with the (i/u)-axis equals a. 

2) For the experimentals a and b are deduced as 
described above. In accordance with the 
Forchheimer expression and by use of the proper- 
ties of the gravel material measured by Burcharth 
the dissipation factors a and j3 are deduced. For 
the case of steady state flow the dynamic dissipa- 
tion term equals zero. 

3) With the properties of the gravel material and the 
fluid, simulations of the flow through a porous 
layer is carried out. Velocity boundaries with a 
constant value are imposed at both ends of the 
model area. For each of the three gravel materials 
the boundary velocity is varied in order to obtain 
a suitable number of points. The simulations are 
made with "full slip" closed boundaries, which 
implies that the pressure gradient is zero outside 
the porous layer. For all the simulations the 
kinematic viscosity of the fluid equals 1.34-10"6 
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4) 

m2/s, which is in accordance with the viscosity of 
the water used by Burcharth. 

The comparisons of the experimentals and the nume- 
rical simulations for two of the gravel materials 
are shown in Fig. 3. 

CASE 1 

n = 0.471 
d  =  0.0385m 
a = 8131 

2.21 

••••   SYSTEM3 
    EXPERIMENTALS 

1~ ~T 
0.05     0.1      0.15     0.2      0.25     0.3 

u (m/s) 

14 • 

12 

10 • 

"E    8 

0.388 
0.0376m 
7817 
1.74 

••••   SYSTEM3 
    EXPERIMENTALS 

~T- ~r~ ~T 
0.05     0.1      0.15     0.2      0.25     0.3 

u (m/s) 

Fig. 3 Comparisons of experimentals and numerical 
simulations for two cases of steady state flow. 

The comparisons show that the model, including a 
bulk description of the porosity layer, is able to re- 
produce the measurements for the case of steady state 
flow. 

Simulation of a dam break 

Testing of the free surface description is done by 
simulation of a dam break. Initially a column of water 
is confined between two vertical walls. When the calcu- 
lation starts the right wall is removed, and gravity 
forces the fluid to propagate along the dry floor. 

At the beginning of the simulation the fluid is 
described by 20x20 cells with a size of 0.1 m in both 
the vertical and horizontal direction. The applied time 
step is 0.01 sec. Examples of results showing the fluid 
position and the velocity is presented in Fig. 4. 

Experimental results for a dam break test case 
have been reported by Martin and Moyce and form a basis 
for a comparison to the model generated results. 
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Fig. 4. Example of results for the dam break test. 
The plots represent the surface location and the 
velocity for each grid node at time 0.3 sec. and 
0.7 sec. 

A comparison between model generated results and 
the experimental results of the toe position vs time is 
shown in Fig. 5. The largest deviation from the exper- 
imental results is everywhere less than one grid spac- 
ing. 

1.00      2.00      3.00      4.00 

Time t(2y/a)° 

Fig. 5  Comparison of a numerical simulation with 
experimental data for a dam break. 
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Wave Run-Up on a Permeable Structure 

The combination of porosity layers and a free sur- 
face is tested by simulation of wave run-up on a rubble 
mound breakwater. The breakwater has a sea side slope 
of 1:2.0 and consists of three porosity layers with the 
following characteristics: 

a = 14.4, 4.9, 2.0 s/m 
b = 1820.0, 109.0, 50.0 (s2/m2) 
C = 0.0, 0.0, 0.0 
n = 0.35, 0.37, 0.39 

The model grid consists of 100 x 3 x 50 nodes and 
the general parameters of the simulation are: 

Ax = Ay = Az =  0.015 m 
At = 0.002 sec 

At the right end of the model area a wave boundary 
is applied with the following parameters: 

H = 0.06m, T = 1.0s 

The still water depth for the simulation is 0.3 m. 

An example from a model simulation is shown in 
Fig. 6. Time series plots of horizontal velocities in 
three points (as defined in Fig. 6) are shown in 
Fig. 7. 

i 

65 

Fig. 6  Example of surface position and velocities 
during wave run-up on a permeable breakwater. 
After t = 1.8 s. 
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o.i 

0.0 

-0.1- 

u(85,H) 
u(65,14) 
u(45,14) 

5 s 

Fig. 7 Time series of horizontal velocities (m/s) at 
three locations, one outside the breakwater, one at the 
edge of the breakwater and one in the coarsest porosity 
layer as shown in Fig. 6. 

Conclusions 

A 2D (x-z) numerical model has been developed for 
description of flows on and in coastal structures. The 
model includes a description of the energy loss in 
porous media taking into account both laminar and tur- 
bulent effects as well as the inertia effect. Compari- 
sons with analytical solutions and measurements from 
physical model tests with waves and currents have shown 
promissing results. 

In order to correctly simulate the flow on and in 
porous coastal structures, it will be necessary to 
establish a better knowledge of the coefficients 
involved in the energy loss equation and to describe 
the energy loss due to wave breaking on a slope which 
implies a formulation of the hereby induced air 
entrainment. 
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