
CHAPTER 5 

COMPUTATION OF BREAKING WAVES 
WITH A PANEL METHOD 

Jan Broeze1 

Abstract 
Some basic properties and computational results are presented of a 
solution method for potential flow problems, with nonlinear waves at 
the free surface. The results show that stable and accurate results can 
be obtained for nonlinear wave propagation problems, up to the stage 
of breaking waves, though no numerical smoothing is applied. Also 
the interaction with constructions on the bottom can be computed 
well. 
For efficient usage of the available CPU-time, a suitable condition for 
the time increments in nonlinear computations is given. 

1. Introduction 

In this paper we will consider the description of propagating and breaking waves 
with a potential model for the fluid flow. 

For the description of potential flow problems in two-dimensional and three- 
dimensional domains, we have developed an accurate panel method. One of the 
boundaries of the domain is the free surface, on which nonlinear boundary condi- 
tions are imposed for the description of the solution in time. 

For accurate descriptions of highly nonlinear wave evolution in complex 
three-dimensional regions, a model should be used that includes the behaviour of 
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the solution in vertical direction. This can be achieved by discretizing the whole 
fluid domain. Such an approach makes computations on extreme problems like the 
development of breaking waves possible. 

For incompressible potential flow problems, the field equation reduces to 
Laplace's equation for the potential. This is an elliptic equation, so that solving the 
problem on the boundaries of the domain is sufficient. Green's third identity 
provides a boundary integral relation for the solution on the boundary. 
Boundary element methods and panel methods are based on a discretization of 
Green's third identity in the physical domain. That is why they can be used for 
modelling the fluid flow in domains with arbitrary boundary shapes. 

Time dependence comes into the problem by the time-dependent boundary 
conditions. These give expressions for the evolution of the free surface position 
and the velocity potential in time. 

Many computations on breaking waves have been discussed in literature (see 
Peregrine, 1990). However, due to restrictions of the numerical methods, in most 
cases the chosen initial solution is not physical. For example, an exact solution of 
a periodic high wave is imposed on a geometry with a smaller depth. In such 
situations, the numerical results are useful for studying the local solution near the 
tip of the wave. However, the global solution is not valid in physical situations. 

Computations on highly nonlinear wave problems in three-dimensional 
domains are still very rare. One example can be found in the work by Xfl & Yue 
(1992). They computed the evolution of a breaking wave with a three-dimensional 
method. A breaking wave was generated by prescribing a non-physical pressure 
distribution at the surface. However, for practical applications, a method for 
computing wave evolution due to interactions with a bottom profile is more useful. 

Romate has developed a higher order panel method for the computation of 
three-dimensional potential flow problems with a free surface. As far as the results 
were presented in his thesis (see Romate, 1989), the method was very well capable 
of computing the evolution of linear wave solutions and weakly nonlinear waves. 
However, stable computations of highly nonlinear waves were not possible yet. 

On the basis of Romate's work, we have further developed the method for 
the evolution of highly nonlinear waves. By the improvements, stable results can 
be obtained for highly nonlinear wave problems up to the stage of the development 
of breaking waves. For an extensive analysis of algorithms used in the method, the 
reader is referred to Romate (1989) and Broeze (1993a, 1993b). 

In this paper we will briefly describe the method of computation. Further- 
more we will show some numerical results on three-dimensional wave propagation 
problems, including the development of a breaking wave. 
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2. Numerical solution method 

The fluid motion is modelled with a higher order panel method. This method is 
based on the assumption of a potential flow, i.e. the velocity can be derived from 
a potential 4>: 

v = V4> (1) 

Due to incompressibility, the velocity potential satisfies Laplace's equation: 

V20 = 0 W 

In our panel method, the field equation problem is solved by using a bound- 
ary integral equation formulation, where Green's third identity is applied: 

| *fe) = | [0© Gn(x,B -<£„(£) G(x,B]dS    (x on 30) (3) 

da 

For the discretization of this equation, the boundary of the domain is divided into 
a number of smooth panels, with one collocation point near the centre of each 
panel. Values in the collocation points of a number of adjacent panels are used to 
determine tangential derivatives. 
Green's identity is solved in the physical domain. Up to quadratic variations of the 
velocity potential and linear variations of its normal derivative are assumed in the 
discretization of the boundary integral equation. Also contributions due to curva- 
ture of the panels are included in the expressions for the influence coefficients. 
This provides very accurate solutions of the field equation. 

Time dependence comes into the problem by the time-dependent boundary 
conditions. 
In our Lagrangian method, at the free surface & we have the kinematic condition, 
expressing that a fluid particle remains at the free surface: 

—^ = v = V4>     at Sf (4) 

and the dynamic boundary condition, expressing zero pressure: 

^ = -SZ + i(V0)2    at 57 (5) 

where g is the gravitational acceleration, and z is the vertical coordinate. 
On the bottom Sp on fixed constructions and on symmetry boundaries, the 

no-flux condition should be satisfied: 
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4>n = 0    at Sb (6) 

where n is the outward directed normal with respect to the fluid domain. 
On a moving structure Ss, or a wave maker, the normal velocity is pre- 

scribed according to the motion velocity V of the structure: 

<j>n = V-n    at S, (V) 

In order to represent large physical domains with a small computational 
domain, we can truncate the domain with artificial boundaries Sa. Radiation 
boundary conditions, that only allow waves travelling out of the domain with 
minimal reflections, are needed on these boundaries. A simple example is 
Higdon's (1987) first order condition: 

?± = - _L_ H±     on Sa (8) 
dt cos a dn 

where n is the normal with respect to the vertical boundary, positive in outward 
direction. This condition perfectly radiates waves that travel at phase speed c and 
at an angle a with the normal n. For second order conditions (that can perfectly 
radiate waves from different directions) the reader is referred to Romate (1992) 
and Broeze & Romate (1992). 

The above described boundary conditions provide values for the time deriva- 
tives of the potential and the positions of the collocation points as a function of 
spatial derivatives of the potential and the vertical coordinate. 

Various methods can be used for integrating the problem in time. We have 
considered the classical fourth order Runge-Kutta method, a third order Taylor 
method and a 2-stage 2-derivative Runge-Kutta method (that uses first and second 
order time derivatives on the original and one intermediate time level). We have 
concluded that the latter method is most favourable for our problem, because it 
provides accurate results in relatively short CPU times. 

An adaptive grid evolution technique was used to obtain desirable grid 
distributions in time. This is especially important in 3-D computations, where a 
strongly deformed grid on the lateral boundaries may have negative influences on 
the accuracy of the solution. 

Our method is very suitable for computations of the interaction of highly 
nonlinear waves with constructions, because there are no restrictions on the shape 
of the boundaries of the domain. Another favourable property is the stability of the 
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method, so that no artificial dissipation or smoothing terms need to be added 
(which may have a large influence on the solution during breaking). 

Time-step restrictions 
One important aspect that we want to discuss here is the chosen time increment in 
the numerical computations. 

We found that stability restriction based on linear theory (see e.g. 
Dommermuth et al., 1988) are not suitable in computations on highly nonlinear 
wave propagation problems. 
Another frequently applied condition is that the highest order terms in the Taylor 
time integration method should be below a given value (see e.g. Nakayama, 1990). 
Such condition is rather arbitrary, and lacks a theoretical basis. 

We have derived a more appropriate condition for the full nonlinear prob- 
lem. 
From a perturbation analysis of the solution around the nonlinear solution, the 
following evolution equations for small disturbances (e,f) in the potential 0 and 
elevation ij can be derived: 

_d 
dr 

(9) -i<M     -g 

\k\ cosy    0 

where s represents a tangential coordinate to the surface, k is the wave number of 
the disturbance and y is the local angle of inclination of the free surface. 
For stability of the numerical method for nonlinear problems, the eigenvalues of 
the matrix in eq.(9) should be in the stability region of the domain: 

i ( - <j>sk ±^skf^Ag\k\ cosy  ) At € Rmb        V* G [0, TT/AX]       (10) 

This is a straightforward condition for the time increment. From numerical test 
computations we found that it is very appropriate: satisfying this condition pro- 
vides a stable evolution of the solution, whereas instabilities occur if it is violated. 
For an extensive description of the derivation of condition (10), the reader is 
referred to Broeze (1993a, 1993b). 

Eq. (10) can reduce the required amount of CPU time in highly nonlinear 
computations with large velocities and fine grids. A maximal time increment can 
be chosen then. 
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3. Computational results on periodic wave propagation 
problems 

The panel method provides stable and very accurate results for linear (see e.g. 
Broeze and Romate, 1992), mildly nonlinear and highly nonlinear wave problems 
(see Broeze, 1993a, 1993b and Broeze et al., 1993). Computations can be per- 
formed on highly nonlinear steady propagating waves near the maximum wave 
height without instabilities, with errors in the elevation of only a few percents after 
a large number of wave periods. 

Fig. 1 shows results of computations on a typical highly nonlinear propagat- 
ing plane wave problem. The wave height is 5m on 10m water (over 80% of the 
maximum), with wave length 60m and Eulerian period 6.5s. This figure shows the 
results of the computations after 0, 1, 2 and 4 Lagrangian periods. The errors in 
the elevation are within 2 % of the wave height. 
The results illustrate that the method is well-capable of accurately describing 
highly nonlinear propagation. 

In order to analyze the accuracy of the method for three-dimensional prob- 
lems, we have computed the same wave solution, where the propagation direction 
of the wave is at an angle T/6 with one of the grid lines. 
Fig. 2 shows the numerical boundary shape from 0 to 6s at intervals 2s. Again the 
results illustrate that no large growing errors occur in the solution. 

4. The interaction of a solitary wave with a mild slope 

A solitary wave is generated on a numerical wave flume with depth 5m. A weak 
slope (1:10) truncates the domain in horizontal direction. The solitary wave has a 
height 3.5m (84% of the maximum) and a phase velocity of 9.0m/s. Initially the 
fluid is at rest. We computed the interaction of the solitary wave and the slope 
with a two-dimensional variant of our panel method. 

The shape of the domain boundaries after 2s, 4s and 6s is given in Fig.3. 
This figure shows how the wave starts deforming on the slope. When the wave 
approaches the end of the slope, it starts to break, and a plunging breaker devel- 
ops. The shape of the jet from t=6.6s to 7.3s is given in Fig.4. A finer grid 
would be needed to further continue the computations. 
It is noted that in our method, no collocation points occur at the intersection. Also 
no special condition is applied at the intersection of the slope with the free surface. 

In order to analyze the quality of the numerical results of these computati- 
ons, we have considered a number of theoretical models for the description of 
breaking waves. 
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A few theoretical models exist for the evolution of the tip of a breaking 
wave and the surface region below the jet (see e.g. Longuet-Higgins (1980) and 
New (1983). These models were developed for breaking waves on deep water. 
They cannot be applied to our situation, because of the influence of the slope on 
the solution. 

Peregrine (1990) suggested to check the motion of the tip of the wave (it 
should be in free fall). 
Fig.5 shows the evolution of the coordinates of the tip of the wave during the final 
stage of computation. Obviously, the free-falj model holds very well from t=6.95s 
(when the jet has developed) to 7.3s. 

5. Results on breaking wave computations 
with the three-dimensional method 

We have used the three-dimensional panel method to compute the interaction of the 
highly nonlinear solitary wave with a smooth construction the bottom. Fig. 6 shows 
the bottom profile in these computation. 
Fig.7 shows the grid on surface and on the lateral boundaries of the domain when 
the wave front has started to overturn. Obviously, the method is capable very well 
to compute the evolution of the solution so far. The well-arranged grid on the 
lateral boundaries illustrates the suitability of our adaptive grid motion algorithm. 
The forming of the jet is more clearly illustrated in Fig. 9. 

In order to show the height of the construction in comparison with the 
domain dept, in Fig. 8 the bottom profile and the surface are depicted. 

The computations on this wave cannot be further continued due to the small 
number of panels near the tip of the wave. A large number of extra panels would 
be needed to increase the grid density near the jet. However, this cannot be 
achieved due to memory restrictions on our supercomputer. 

6. Conclusions 

In this paper we have seen that highly nonlinear waves can be very well described 
with an accurate panel method. Also real three-dimensional effects can be com- 
puted. Efficient solution methods for the spatial problem, for the time integration 
and for the grid motion are of crucial importance for the success of the method. 

The results show that even extreme problems like the development of break- 
ing waves due to a construction on the bottom can be modelled. We think that 
such models offer new possibilities for studies on nonlinear wave propagation 
problems in complex three-dimensional domains. 
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Fig. 1. Numerical results from computations on highly nonlinear wave problem. 
Shape of boundary and errors in elevation after Os, 7s, 14s and 28s. 
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Abs. error in elev 
• ABOVE 0,135 • 0.105 - 0.135 • 0.075 - 0.105 

• 0.045 - 0.075 

C3 0.015 - 0.045 

C53 -0.015 - 0.015 

M -0.045 - -0.015 
•1 -0.075 - -0.045 

H£ -0.105 - -0.075 

HI -0.135 - -0.105 
BELOW -0.135 
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Fig. 2. Numerical results from computations on highly nonlinear wave, propagat- 
ing at angle w/6 with one grid direction. 
Shape of boundary and errors in elevation after 0s, 2s, 4s and 6s. 
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Fig. 3. Shape of the domain boundaries in the 2-D computation of the interaction 
of a solitary wave with a slope at t=2s, 4s and 6s. 

Fig. 4. Jet of the breaking wave in two dimensions from t=6.6s. to 7.3s (every 
0.1s). 
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Fig. 5. Evolution of the position of the tip of the wave jet from 6.6s to 7.4s (exact 
data for particle in free-fall are dotted. 

Fig. 6. Shape of bottom profile in 3-D computation on interaction of solitary wave 
with construction. 
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Fig. 7. Shape of the grid on surface and lateral boundaries in computation of a 
breaking wave in three dimensional configuration. 

Fig. 8. Surface and bottom profile in computation of breaking wave. 

Fig. 9. Surface profile near jet of wave. 




