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Abstract 

Two different flow models of the surf zone wave-current dy- 
namics based on Boussinesq and Serre equations have been imple- 
mented and tested. Good results were obtained while testing the 
models against many diffent wave and current data sets. A pre- 
liminary calibration was tried but further activities are required 
to define the proper parameters. 

Introduction 

The research in coastal hydrodynamics recently focused its 
attention on the mathematical and numerical modelling of the 
water flows in that region where wave breaking takes place. 

This was to fill the gap that shallow water wave theories 
suffered up to now: they could no longer predict wave-currents 
characteristics while approaching the surf zone. This was a very 
serious limit to the application of predictive models to coastal 
engineering and to environmental problems. 

The latest trend in the modelling of such phenomena is to 
develop flow models that work at space-time scales much smaller 
than the wave length and period. Those models are based on the 
solution of the equations derived from the continuity and approx- 
imated Navier-Stokes equations. Of particular interest are the 
Boussinesq equations, the Su-Gardner equations and a particular 
approximation called the Serre equations. The presence of turbu- 
lence and energy dissipation in the breaking region is introduced 
by the concept of the 'surface roller'. 

t Snamprogetti S.p.A. - Offshore Division 
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The roller is the upper turbulent region of the wave. The 
main hypothesis is that the water mass of the roller does not 
take part in the wave motion, but only contributes to the internal 
pressure field. Its main action is, then, to extract energy from the 
wave motion acting on it, as a first approximation, through an 
hydrostatic pressure contribution in the momentum equations. 

The Boussinesq equations 

In the following an irrotational (the velocity is the derivative 
of a potential </>), inviscid fluid with constant density p is consid- 
ered. The water depth is h and the surface waves are characterized 
by an amplitude A and a wave number k. For shallow waters (the 
depth to wavelength ratio is smaller than one), considering weakly 
non linear and moderate long waves the Boussinesq approximation 
is valid: 

0(e) = 0(/?) < 1, 

where /J, = kh and e = A/h. In the following the unidimensional 
equation including terms in the order of 0(e) and 0(/J,

2
) is con- 

sidered: 
m + i(h + rj)u]x = 0, (1) 

_        h     _ h2 _ 
ut + uux + grjx = -[(hu)xxt) - -r(uxxt), (2) 

where 

n=h^  I V<M" (3) 

-h 

is the horizontal depth-averaged velocity and where the subscripts 
represent partial derivatives. The velocity vertical profile is re- 
lated to the mean velocity through a parabolic equation depending 
on the vertical coordinate z: 

h h2_ _ z2_ 
u(z) = u- ~(hu)xx + —uxx - z(hu)xx - —uxx. (4) 

These equations have a dispersive behaviour as the phase velocity 
depends on the wave number k: 

(7,2 ,2 \ 1/2 

2-^fj (5) 
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This depedance has been introduced by the 0(/i2) term. It may 
be noticed that the same term causes the pressure field not to be 
hydrostatic: 

P = pg(ri- z) + ^(z2 + 2zh) V -ut. (6) 

The Serre equations 

Using the same procedure of Su and Gardner (1969), expand- 
ing the Navier-Stokes equations up to the order 0{ejj?) and con- 
sidering a slowly varying water depth (the horizontal derivatives 
of the water depth are neglected at the higher order) the Serre 
approximation is obtained for O(e) = 1, and 0(fi2) < 1: 

Vt + Kh + V)u]x = 0, (7) 

—       ,L-        h2- ut + gr]x + uux ~ hhxuxt + —uxxt + 

2 h2     _ 
+hrjxuxt + -hrjuxxt + — [uuxx - (ux)2]x . (8) 

The presence of higher order approximation makes the solution 
(solitary or cnoidal solutions for example) to be less peaked with 
respect to the Boussinesq's one (see fig.l) 
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Fig.l - Solitary solution for Boussinesq and Su-Gardner equations 
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The 'Surface Roller' 

The description of the breaking process based on the concept 
of the 'surface roller' was developed by Deigaard (1989). The 
roller is considered to be that portion of water mixed with air 
that is formed on the front region of the wave after breaking. The 
main assumption is that both vertical and horizontal acceleration 
within the roller are negligible as compared to its other effects on 
the water beneath. This also means that the pressure field within 
the roller may be considered hydrostatic. The roller follows the 
wave crest at a celerity C = y/gh. On these bases the roller 
may be considered as a solid body that does not take part in the 
water motion within the wave but only extracts energy from it. 
This sort of description fits well the spilling breaking process as 
the overturning of the wave crest and the air-entrainment play a 
minor role. On the other hand the roller doesn't provide a good 
representation of a plunging breaker: the overturning of the wave 
crest generates a too strong jetting within the whole wave to be 
neglected. Being 6 the roller elevation above the wave crest and r\ 
the wave elevation, the shear stress TS present at the wave crest- 
roller interface (Deigaard and Fredsoe (1989)) is: 

rsdx = -pgS (6X + rjx) dx. (9) 

It may be deduced that the energy dissipated through a shear 
stress term in the wave-roller interface is provided by the whole 
water columns. Considering the spatial derivative Px of the Bous- 
sinesq pressure vertical profile and neglecting terms in the order 
ofO(e//2): 

ft = e (,, + «,) + «,' (zA..* + 2^A, + ±* - «*) .   (10) 

This gradient is averaged over the depth giving: 

__ eg h h2 

Px = € (rjx + 5X) + (rjx +6X) -€/J?- (hu)xxt + e/j,2—uxxt. 

(n) 
It may be noticed that the Boussinesq equations are obtained 
neglecting the terms proportional to 6 and 6X.  The dimensional 
terms due to the roller alone are: 

Px = -pg 
c fi IC 

h + rj 
(12) 
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In the following numerical application this quantity will be mul- 
tiplied by a factor K that globally accounts for other energy dis- 
sipating phenomena and is calibrated as one of the three 'driving 
parameters' used in the models. Finally, including the presence of 
the roller in the mass balance the continuity equation becomes 

(Vx+Sx) + [(h + r1)u + 6Cx}x = 0, (13) 

where Cx is the x-component of the wave celerity. 

The Roller detection and growth 

More consideration is given to correctly represent the surface 
roller growth from the breaking point toward the shore. Raichlen 
and Papanicolau (1988) pointed out that the bubble mass on the 
front face of the wave grows from zero, reaches a maximum and 
then decreases. Moreover the maximum size of the roller is reached 
at different distances X/hbr after breaking in dependence on the 
seabed slope and the breaker type (spilling or plunging). This 
relative distance ranges between one and ten. In the present model 
the growth of the roller is governed by the empirical relationship: 

8'{x) = 6{x) 
tanh (X/hbr) + tanh(/3) 

1 + tanh(/3) 
(14) 

where X = distance from the breaking point, h)>r = breaking point 
water depth, /3 = calibration parameter. 

The numerical model 

Generally speaking, along the curve C bounding a certain 
domain D both open and closed boundary conditions may be en- 
countered. The latter covers all those situations ranging from 
total reflection to complete absorption. At the open boundaries 
radiation conditions are applied. They are schematized according 
to the following relationship: 

fm-Cr) = -2Cmf(a), (15) 

<h + V) = fnU (16) 

where 
fni= outgoing normal flux 

rj= actual sea surface elevation 
r)i= elevation of the incident wave 
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C= wave celerity 
a= the angle between the incident 

wave and the boundaries 

The wave celerity C is calculated by the appropriate theory: 
second order cnoidal wave theory. On the other hand the linear 
theory for shallow waters is applied to determine the celerity for 
irregular waves. The function f(a) was firstly evaluated as f{a) = 
1 + sin a. A numerical analysis carried out with unidimensional 
and bidimensional models snowed that the validity of the above 
relationship is limited to angles a close to 90°. The function 
f(a) is now considered a calibration parameter of the model, and 
is empirically evaluated depending on the value of a. For closed 
boundaries two different schematizations are used. Total or partial 
reflection is schematized by the relationship 

fn2 - C{\ - 7)»7 = 0, (17) 

u(h + ?]) = fn2, 

where 
fn2= incident normal flux 

7= reflection coefficient (< 1; 1 for total reflection). 

In this case, too, the wave celerity C is calculated by the 
appropriate theory: cnoidal for monochromatic waves and linear 
for irregular waves. Complete absorption is schematized accord- 
ing to a 'sponge layer' approach (Larsen and Dancy, 1983). The 
'sponge layer' is simulated by an extension of the model behind 
the absorbing boundary. In this extension, after each integration 
time step, the surface elevations and the fluxes are divided by a 
dumping factor fi(x) which is a function of the distance x from 
the boundary: 

fji(x) = exp [(2-(*.-*)/A* _ 2-*-/A') ln(a)l , (18) 

where As is the size of the grid mesh and a is a constant that 
depends on the number of the grid lines in the 'sponge layer'. 
As for the behaviour of the roller at the boundaries, it is as- 
sumed that there are no incoming rollers from the open bound- 
aries and that they are completely absorbed at the closed bound- 
aries. The basic equations are numerically integrated by a semi- 
implicit multistep finite difference technique (Brocchini,Cherubini 
and Iovenitti,(1991)). 
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The variables are defined on a space-staggered square or rect- 
angular grid. The integration too is staggered in time as the ele- 
vations and fluxes are evaluated at half time steps (2n + 1) At/2. 
From the continuity equation (explicit scheme) the water eleva- 
tion r/ is calculated, then from the water surface profile a test on 
the local slope defines the location and thickness of the surface 
roller. The fluxes are evaluated through the momentum equation 
(roller contribution included) by a semi-implicit technique made 
of three different calculation steps. 

Test cases and preliminary calibration 

The model has been widely applied to many data sets made 
available from different European Institutes (Broechini,Drago and 
Iovenitti (1992),Drago (1992)). The data sets are relative to wave 
elevation (Liberatore and Petti (1988), Schaffer (1991),Dette and 
Oelerich (1991)) and velocity (Quinn et al. (1991)) flume mea- 
surements. The waves used in the tests are both monochromatic 
and irregular; wave breaking occurs over different bottom profiles 
(sloping or barred). In table 1 a scheme on the analyzed data sets 
within the validation activities is reported: 

Institute       Profile Type/(Number of tests)    jf- 

Padua Un. Slope 1/30 Irregular (4) 0.0310-0.0380 
D.H.I. Barred Regular (3) 0.0212-0.0522 
Hannover Un. Slope 1/20 Irregular (4) 0.0316 
Edinburgh Un. Slope 1/30 Regular (2) 0.0220-0.0330 

Tab. 1 - Validation data sets. 

Table 2 summarizes the percent error (Hexp — Hcomp)/Hexp from 
outside the breaking region to the shore for both Boussinesq and 
Serre equations. 

•§- Bouss. Serre 
L>b 

1.5 +5 +8 
1.0 +7 +11 
0.6 -15 -8 

Tab. 2 - Average percent (%) error on wave height. 
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Fig.2 - Wave elevations comparison. 
(Data shifted for better comprehension). 

Figure 2 shows an example of computed and measured wave 
elevation comparison (inside the surf zone) while figures 3 and 4 
represent, respectively, a typical comparison of the wave spectra 
and of the decay pattern for the wave height over a barred profile. 
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Fig.4 - Wave height decay pattern. 

Comparison on velocity data has been worked out both on 
mean velocity spatial series and on vertical profiles. In fig.5 a 
typical pattern for mean velocity is shown. 
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*cornp)I 'eip   E>e Table 3 sums up the percent error (Vexp 

tween experimental and computed velocity profile for two different 
wave phases and for both Boussinesq and Serre model. 



MODELLING SHORT WAVES 85 

Dist. from Crest Trough 
bottom(cm) Bouss. Serre Bouss.              Serre 

4.0 -15 -2 -20                    -13 
6.0 -14 -1 -10                   -3 
8.0 -9 +3 -5                     -5 
10.0 -13 -2 +40                 +50 
12.0 -8 +3 
14.0 -5 +6 

Tab. 3 - Percent error on velocity profiles. 

It may be seen that for the maximum phase the Serre model 
oscillates around the experimental pattern with errors of about 
5% while the Boussinesq model gives an almost constant over- 
estimation of the velocity of about 10%. Within the calibra- 
tion activity typical relationships between wave-seabed character- 
istics and model breaking parameters (an,r,K,/3) were looked for. 
Thirteen monochromatic wave decay patterns were modelled and 
compared against the experimental data (Liberatore and Petti 
(1991)). The experimental waves were characterized by a deep 
water wave steepness ranging from 0.03 to 0.07 and broke over 
a submerged bar while eight wave gauges recorded the free wa- 
ter surface from the breaking point to the shoreline. Moreover 
video camera recordings all along the flume were taken to better 
evaluate the roller area and the breaking point location. 
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The adopted methodology was to minimize both the differen- 
cies between the experimental and the computed wave shape and 
to reproduce the wave height decay pattern all along the flume 
within a percent error of about 15%. Once the best represen- 
tation of the wave decay pattern obtained, a first comparison of 
the results against those coming from wide data sets (Easson et 
al.(1988)) was tried (see fig.6). 
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Fig.7 - Preliminar calibration curve for at,r. 
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Fig.8 - Preliminar calibration curve for K. 

The underestimation of the H/h ratio (mainly for the Boussinesq 
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model) is related to the adopted experimental set-up where the 
gauges were spaced too far apart to exactly determine the break- 
ing point location. The preliminary calibration curves for the 
breaking slope a^r and the dissipation factor K are shown in fig- 
ures 7 and 8. The correlation factors are not so high as to suggest 
that the performed calibration is sufficiently reliable. Anyway it 
is clear that the Boussinesq model needs much higher values for 
the dissipation parameter with respect to the Serre model to ob- 
tain the same energy decay. This is due to the presence of terms 
proportional to 0(e^2) which act as a smoothing factor within the 
surf zone. 

Conclusions 

A quite good fit of the experimental wave elevation and spec- 
tra has been obtained through the model based on both Boussi- 
nesq and Serre equations. A satisfactory description of the wave 
height decay process in the surf zone was reached (errors of about 
15%). The Serre equations give a much better representation of 
the velocity field than the Boussinesq's. A preliminar calibration 
of the main parameters was tried but some uncertanties in the 
determination of the experimental breaking point force a more 
accurate evaluation on the basis of the camera recordings. 
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