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Abstract 

Twelve methods used for estimating the directional wave spectrum from heave- 
pitch-roll data are compared on realistic numerical simulations. These methods are 
based on different modelling approaches including simple and sophisticated ones : 
Fourier Series decomposition, Fit to unimodal or bimodal parametric models, 
Variational fitting technique, Maximum Likelihood Methods, Eigenvector 
Methods, Maximum Entropy Methods and Bayesian approach. The comparison is 
performed in terms of practical aspects such as estimation error, computation time, 
implementation difficulty... This study must be regarded as a preliminary step 
devoted to the choice of optimal methods for operational in situ measurements. 

1.  Introduction: 

The knowledge of directional properties of waves is of greatest interest in ocean 
and coastal engineering and the directionality of waves has appeared to have a great 
influence for offshore situations : moored vessels, oil-platforms,... as for nearshore 
problems : stability of coastal structures, harbour agitation, coastline 
morphodynamic evolution... A great effort has been devoted in the recent years to 
the determination of the directional wave spectrum. Several measurement 
techniques have been proposed for in situ or laboratory applications. They can be 
divided into several groups depending on the way they proceed : 

- the single-point systems that measure at the same location several properties 
of waves. From this type of sensors one can mention the heave-pitch-roll buoy 
(Kobune et al., 1985 ; Lygre and Krogstad, 1986 ; Mardsen and Juszko, 
1987), the two-component current meter associated with a pressure sensor 
(Briggs, 1984) and the cloverleaf buoy (Mitsuyasu et al, 1975). 

- the gauge arrays that are composed of several sensors set up at various 
locations. The sensors may be either identical or of various types including for 
instance current meters and pressure sensors (Hashimoto et al., 1987) 

- the remote-sensing systems including active microwave radars (Jackson et al., 
1985), aerial stereo-photography techniques... 
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Among these systems the heave-pitch-roll buoy is probably the most widely 
employed for operational use because it is a compact single-point measurement 
system of moderate cost and easy keeping. In the meantime the sampling of wave 
statistics is limited to three properties : the sea-surface elevation (heave) and two 
orthogonal slopes of sea-surface (pitch and roll). Starting with only three measured 
quantities the estimation of the directional wave spectrum is a difficult inverse 
problem for which no unique method can be exhibited. To take maximum 
advantage of these rather limited information, several methods based on various 
modelling approaches have then be proposed. 

The aim of this study is to compare a large number of these methods on 
numerical representative sea-state simulations. In this study we are interested in 
evaluating the ability of the methods to estimate the simulated directional spectra 
(estimation error) and studying practical aspects of their use (implementation 
problems, computing time). This preliminary work aims to exhibit practical 
recommendations for the choice of optimal methods that could then be applied in 
laboratory or in the field. 

2.  Problem formulation 

The directional wave spectrum S(f,9) is a function of wave frequency f and 
direction of propagation 0. The following classical decomposition is used : 

S(f,0) = E(f).D(f,0) (l) 
in which E(f) is the one-sided frequency spectrum that may be estimated by a 

single record of sea-surface elevation. It is related to the directional spectrum by : 
r2% 

1 E(f)= S(f,0)d8 (2) 

D(f,0) is the directional spreading function satisfying two important properties : 

D(f,0) > 0 over [ 0 , 2TT ]      and      I     D(f,0)d0 = l (3) 

Jo 
The following pseudo-integral relation may be written between the directional 

spectrum and the sea-surface elevation r|: 

T|(x,y,t) = I      j     V2.S(f,0).df.d0   . cos[27tft - k.(x.cos0+y.sin9) + (p ]       (4) 

Jo   Jo 
In the present study we assume that the buoy is able to measure the sea-surface 

elavation and two orthogonal slopes on the sea-surface : 

Tl(t) = Xi(t) 

§-(t)=Tlx(t) = X2(t) (5) 

|j-(t)=Tly(t) = X3(t) 
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By applying spectral analysis procedures it is possible to compute the cross- 
spectra Gjj(f) between each couple (Xj, Xj) of the three measured properties : 

RijWe-^ftdt    withRij(T)=    Hm    U   Xi(t).Xj(t-M) dt    (6) 
T->°°  L]Q 

The cross-spectra or spectral cross-correlation coefficients are in the general 
case complex quantities which are often written in the following form : 

Gij(f) = Cij(f) - i.Qij(f) (7) 

Qj(f) is called "coincident spectral density function" or "co-spectrum" and 
Qij(f) is called "quadrature spectral density function" or "quad-spectrum". 

By using (4) and the linear relationship between the elevation and the slopes of 
sea-surface it may be shown that the cross-correlation coefficients for the heave- 
pitch-roll buoy take the following expressions : 

r27t 

Cii© = S(f,9) d9 = E(f) Qn(f) = 0 

(8) 

(-271 

C22(f) = E(f).k2       D(f,e).cos2(8) (16 Q22(f) = o 
Jo 

C33(f) = E(f).k2       D(f,9).sin2(9) d9 Q33© = 0 
Jo 

tin 
C12(f) = 0 Qi2(f) = E(f).k      D(f,9).cos(9) d9 

Jo 
|-2TC 

C13(f) = 0 Ql3(f) = E(f).k      D(ft6).sin(9) d8 
Jo 

C23(f) = E(f).k2       D(f,9).cos(9).sin(9) d9       Q23(f) = 0 
Jo 

From the twelve real cross-correlation coefficients only six are non equal to 
zero. Furthermore Cn(f) does not carry any information about the directional 
distribution and Cn(f), £22(1), C33(f) are tied by the following relation : 

C22(f) + C33(f) = k2.Cn(f) (9) 
that we can use for the calculation of the wave number expression : 

k=JC22(t) + C33(f)~ 
V        C„(f) (10) 

As established so far it is possible to compute by spectral analysis only five 
independent coefficients at each frequency from which one is devoted to the 
estimation of the frequency spectrum E(f) and the four others may be used for the 
computation of the directional spreading function D(f,0) at this frequency. The 
problem of directional spectrum estimation is then to determine a continuous 
function over [0 , 2%\ satisfying (3) with only four independent integral properties 
from (8). It is clear that finding a solution to this difficult inverse problem can not 
be proceeded in an unique way because of the too feeble number of constraints. 
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3.  Review of methods used for estimating the spreading function 
Among the theoretical modelling approaches proposed in the literature to solve 

the above exposed problem, twelve operational methods have been selected and 
implemented in the software PRD-WAS 1.0 (Pitch and Roll Data - Wave Analysis 
Software) developed at LNH (Benoit, 1991). Only a short description of the 
theoretical background of each method is reported below. Further information may 
be found in the mentioned references. 

.!.•...Tr.unc.a.t.ed..F.Quri.er..Series..(.IPS)..; the directional spreading function is 
expressed as a truncated series whose first four coefficients are easily computed 
from the spectral cross-correlation coefficients : 
D(f,8) = J- (i- + ai(f).cos 0 + bi(f).sin 9 + a2(f).cos 20 + b2(f).sin 20 ) (11) 

jc   2 

2,..Weighte^.truncaled.F^urier..Serigs .(WFS)..: Following Longuet-Higgins et al.. 
(1963) a weighting function is used to avoid negative values of the former method : 
D(f,8) = J- (1 + 2.(ai(f).cos 9 + bi(f).sin 9 ) + i(a2(f).cos 29 + b2(f).sin 29))    (12) 

II   2    3 6 
3...Fit.tQ.nnimpdal.Gaus.sian Model..(IMF)..; A unimodal parametric model of 

gaussian type (Borgman, 1969) is used whose two unknown parameters a et o are 
computed from the first two Fourier coefficients of the spreading function : 

i   J.W1 
D(f,0) = —i—expJ-L-^i- (13) 

V2¥o       \   2o2 / 
.4.-..Fi.t..tQ..BimQdaL.M.it.s.ijy.a5H..M.O.d.e.l...(2MF.)..; A bimodal parametric model 

obtained from linear combination of two unimodal Mitsuyasu-type models is used: 

D(f,6) = —^- cos2s' (~^) + -i^- cosM^2-) (W) 
A(si) 2 A(s2) 2 

Its five unknown parameters are calculated from the spectral cross-correlation 
coefficients by using a method based on the least-square method (Benoit, 1991). 

5,. .Vari.a.tiQ.n.al. .Fitting.^ and 
Hasselmann (1979) developed this method by which an initial simple estimate is 
iteratively modified to minimize a "nastiness" function that takes into account the 
various conditions on the spreading function. 

6....Maximum..ykeli.hood.M.ethod...(MLM.)..; By this method the spreading 
function is regarded as a linear combination of the cross-spectra : 

3    3 

D(f,9) = £ £ w*(9).wm(9).Gij(f) (15) 
i=i j=i 

The weighting coefficients wn are calculated with the condition of unity gain of the 
estimator in the absence of noise (Oltman-Shay and Guza, 1984). 

7..Iteratiye.Maximum.LikeH^ The estimator obtained by 
the former method is not consistent with the data cross-spectra. It is also iteratively 
modified to let its spectral cross-correlation coefficients become closer to the ones 
obtained from the data (Oltman-Shay and Guza, 1984). 

8....Eigenvector.^Method..(EYM)..; Mardsen and Juszko (1987) proposed a 
refinement of the MLM in which the data are partitioned into signal and noise 
through the calculation of the eigenvalues of the spectral cross-correlation matrix. 

.9..Iterat.iye.EigenVec.tor.Method..(IEVM)..: the same iterative improvement as 
proposed for trie MLM is applied to the Eigenvector Method. 
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lD....Maximum.EntrQp.y.MethQd..T..Y.eisio.n..l..(ME.Ml)..; Lygre and Krogstadt 
(1986) proposed to find an estimate of the spreading function by maximizing : 

In (D(f,0)) d6 (16) 

under the constraints given by the spectral cross-correlation coefficients. 

l.L.Maximum Entrppy.Method.- Version 2.(.ME.M2)..: The same approach may 
be considered by using Shannon's definition for entropy (Nwogu et al., 1987): 

/•2JC 

% = -{     D(f,G).ln (D(f,0))d9 (17) -[ 
With the former version the expression of the directional estimate is easily obtained, 
but with the latter a non-linear system of equations has to be solved. 

12,. Baye^ian Directional.Method.(BDM)..: With this statistical technique used 
for regression analysis (Hashimoto et al., 1987), no a priori assumption is made 
about the spreading function which is considered as a piecewise-constant function 
over [0 , 2K]. The unknown values of D(f,0) on each of the K segments dividing 
[0 , 2TC] are obtained by considering the constraints of the spectral cross-correlation 
coefficients and an additional condition on the smoothness of D(f,6). 

4.  Description of the performed tests 
Numerical sea-state simulations are performed by following the single direction 

per frequency method (Miles, 1989) based on a discretization of (4): 
N 

T| (x,y,t) =   X   An cos (2n.fn.t - kn(x.cos 9n + y.sin 9„) + (pn) (18) 
n=l 

with: An = V2T(fn7en) Af„ A9n 

cpn  =  2rcU[0,l]    (random phase) 

f„ = (n - 1) Af with Af = & = 1 

(19) 

0n are of the form k.A9, but randomly distributed over [0 , 2ft] 
The frequency spectrum E(f) is a classical JONSWAP spectrum with a significant 

wave height of 4 m, a peak frequency of 0.1 Hz and a peak-factor y = 3.3. 
The directional spreading function is of the form : 

npi,ai,P2,a2,\(e) = ^.npi,ai(e) + (i-unp2)a2(e) with o < x < 1    (20) 

with :   nPitt(9) = -J— cos2P(9-a)       if 9 e   a-S-; a+: 
(21) A(p) L    2 2 

np,a(6) = 0 if 9 e ja-Tt; a-|] u[a+|; a+n] 

A(p) is a normalizing constant to ensure the properties (3). 
A Gaussian real white noise is added to the simulated time series. Its spectral 

density is constant from zero to the Nyquist frequency fc. The noise level is 
expressed in terms of a percentage of the RMS (root mean square) amplitude of sea- 
surface elevation as proposed by Nwogu et al. (1987). 
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The simulated time series have a time step of 0.5 s and a duration of 4096 s 
(8192 points per signal). This represents a record of around 410 waves with 20 
points per wave (at peak frequency). 

The spectral estimator is based on the technique of the averaged periodogram on 
the whole simulated sequence partitioned in segments of 1024 points. An 
overlapping of 25% between adjacent segments is used and a parabolic data 
window is applied to the common part of two adjacent segments. The resulting 
frequency resolution is 0.002 Hz. 

Three test cases are performed with the following characteristics for the 
directional spreading function : 

- case 1 : Unimodal Broad Spreading Function (X=l I pi=l I ai=120°) 

- case 2 : Unimodal Thin Spreading Function (\=1 I pi=10 I oci=70°) 

- case 3 : Bimodal Spreading Function (A,=0.5 I pi=2 I ai=130° I p2=6 I OC2=240°) 

The first case rather represents a wind-sea with a large spread around a main 
direction of propagation. In the second case the spread around the main direction of 
propagation is much lower indicating a rather "old" swell. In the third case we have 
a crossed-sea with two main directions of propagation. The three directional 
spreading functions are presented on figure 1. 

case ) : Unimodal Broad Spreading Functii 

case 2 : Unimodal Thin Spreading Functio 

135 180 225 270 3' 
DIRECTION  (DEC) 

Figure I : The three Directional Spreading Functions 

To perform the comparison of the methods five criterion are taken into account: 
a) the error of the estimate D(6) produced by the method versus the simulated 

spreading function D(9). This error is measured by the Weighted Average Percent 
Error (WAPE) as proposed by Oltman-Shay and Guza (1984): 

£|D(e)-D(6)| 
e WAPE = - •xlOO 

5>(6) 
e 

b) the sensitivity to the shape of the spreading function 
c) the computation time measured on an IBM 3090 Computer 
d) the noise sensitivity 
e) the difficulty of implementation 

(22) 
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5.  Presentation and discussion of the results 
The spreading functions estimated at peak frequency by the various methods on 

the three cases with a noise level of 20% are reported on figures 2, 3 and 4 
respectively. On these figures the target function is represented by a dashed line and 
the spreading functions estimated at both the frequency surrounding the theoretical 
peak frequency are represented by continuous lines with different marker symbols. 
The WAPE and CPU Time are also reported on the same figures. An overview for 
the comparison of the various methods on the three cases is presented on figure 5 
where performance is visualized by points representing WAPE versus CPU Time. 

Because on the great volume of results to be presented in such a comparative 
study only nine methods appear on these figures. Both the Fourier Series methods 
(TFS and WFS) are not reported because it is now well known that they do not give 
good results although they are fast and easy to implement. The former often 
produces negative values which are not acceptable for a spreading function. For the 
latter the suppression of negative values by a weighting function results in an 
important smoothing of the curve and strongly under-estimates the peaks of the 
spreading function. The Iterative Eigenvector Method IEVM is not reported because 
it has sometimes failed to converge during these tests (in particular on case 2) and 
produced spurious peaks. 

The IMF method (Fit to Unimodal Gaussian Model) is the fastest one and 
produces good results on the two first cases where the target spreading function is 
unimodal, but as execpted do not give a reliable estimate on case 3. 

The extension of this approach to Bimodal Model Fitting (2MF) is very 
satisfactory on the three cases, more especially as one has to keep in mind that it is 
tried to determine five model parameters from only four data coefficients. Even if 
more validation cases are needed for this method currently developed at LNH, the 
results on these three cases are very promising. Furthermore the computing time 
may be considered as very short. 

The Variational Fitting Technique of Long and Hasselmann gives good results 
on the unimodal cases because the initial model (based on IMF method) is already 
close to the target model, but in the third case when the iterative algorithm has to be 
activated, the computing time increases rapidly for an estimate that still produces 
50% WAPE. At this point of validation this method has not shown definite 
advantages compared to its rather long and difficult implementation. 

The Maximum Likelihood Method produces rather good estimates on all the 
cases with a very short CPU Time. As it is furthermore rather easy to implement we 
understand why it is so widely used for operationnal measurement. Its iterative 
refinement IMLM improves the estimation on case 3, but also shows a trend to split 
the peak on unimodal cases. Nevertheless it appears better than the MLM on figure 
5 even if the CPU Time is clearly higher. During these tests 10 iterations were 
performed but further tests are required to optimize this value. 

The Eingenvector Method does not reveal here a particular interest: the method 
is fast but on these cases the estimates are not very accurate. This method should be 
probably more interesting on cases where the noise level is much higher. 

The first version of the Maximum Entropy Method (MEM1) is easy to 
implement and needs very little CPU time, but the estimate is not reliable and split 
the peak on unimodal cases. On case 3 the directional spreads are under-estimated. 

The MEM version 2 (MEM2) is clearly superior and gives very good estimates 
on the three cases. On the other hand the CPU time is high and the implementation 
of this method is not simple. 
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Spreading Function estimated at Peak Frequency - Noise level : 20% 
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f SIMULATED   DIRECTIONAL   SPECTRUM 

7, IMLM 

4,  2MF S, EVM 

II. MEM 2 

Figure 7 :     COMPARISON   OF   DIRECTIONAL   SPECTRUM   SHAPES   ON 
THE   THIRD   NUMERICAL   SEA-STATE   SIMULATION 
(Bimodal Spreading Function)    - Noise level : 20% 
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The Bayesian Direction Method also produces good estimates on these cases 
although there are very few information on input. This is also an extreme 
application of this sophisticated method and the resulting CPU Time is very high. 
Following its authors we can not affirm this method will always produce reliable 
estimates for so little amount of data. 

From the analysis of figure 5 four methods giving less than 25% WAPE on the 
three cases may be identified : 2MF, IMLM, MEM2 and BDM (ordered following 
increasing CPU Time). These methods are rather stable in the sense that the CPU 
Time is rather constant and the WAPE do not vary in a great manner from a case to 
an other. Meanwhile the CPU Time is changing in a ratio of around 10 from a 
method to the following one. 

The effect of noise is 
sensitive as soon as we try to 
compute the spreading function 
too far from the peak frequency. 
As example the variation of 
directional spread with noise 
level is reported on figure 6. 
Following Nwogu et al. (1987) 
who obtained the same 
conclusions about noise effect 
study, we would advise not to 
compute the spreading function 
out of the range [0.75 fp, 1.5 fp]. 

Figure S : Effect of Noise Level on Directional Width 
(Case 2 : Unimodal Thin Spreading Function) 

Figure 7 shows 3D-plots of the directional spectra estimated by seven of these 
methods on case 3. The most accurate estimates are clearly given by the above 
identified four methods : 2MF, IMLM, MEM2 and BDM. The MLM spectrum may 
be regarded as acceptable. The LHM and EVM spectra are of relative poor quality. 

6.  Conclusion 
As major conclusions the following points have to be highlightened : 

- the determination of the spreading function from heave-pitch-roll data is a 
critical problem that should be undertaken only around peak frequencies while 
on the other hand representative parameters such as main direction, directional 
spread, etc... may be computed over a much larger frequency range. 

- Simple methods as Fourier Series Decomposition (TFS, WFS) or Unimodal 
Fitting (IMF) are not recommended because their estimates are of poor quality. 

- the Maximum Likelihood Method (MLM) may be advised because it is fast and 
rather easy to implement. Its iterative refinment (IMLM) clearly improves the 
method and appears as an acceptable compromise between error and CPU Time. 

- the Maximum Entropy Version version 2 (MEM2) seems to give the most 
reliable estimate but its computing time is rather high. 

- the Bimodal Fitting (2MF) in its form developed at LNH seems very promising 
but has to be validated on more simulations. 

- Sophisticated refinements as Variational Model Fitting (LHM) or Bayesian 
Directional Method (BDM) are not interesting for the case of the buoy where 
only few information are available. 
Of course these preliminary conclusions have then to be confirmed or altered by 

applying the methods to laboratory or field data. Nevertheless guidelines for the 
choice of a priori   optimal methods may be extracted from this study. 
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