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NUMERICAL MODEL OF THE NONLINEAR INTERACTION OF 
WAVES AND FLOATING BODIES 

Michael Brorsen *     Henrik I. Bundgaard 2 

Abstract 

A numerical model for the computation of the nonlinear interaction of water 
waves and floating large-volume bodies is described. The model works in the 
time domain and is based on the boundary element method (BEM) with internal 
generation of the incident waves and absorption of all outgoing waves (internally 
generated as well as reflected). This procedure makes it possible to simulate long 
time series of nonlinear wave forces even in case of irregular waves. Drift forces 
are extracted from the time series by filtering. Steady and slowly varying drift 
forces are computed in 2D and first order wave forces are computed in 3D. 

Introduction 

The need for an accurate description of the interaction of nonlinear water waves 
with floating large-volume bodies has been increasing during the last decade. The 
forces acting on a floating body are generally divided into three components: 

• forces at wave frequencies. 

• low-frequency forces caused by e.g. wave groups. 

• steady components of the forces. 

In most (if not all) commercial models today the wave-body interaction is 
based on linear theory in the frequency domain. This approach leads normally 
to accurate estimates of the forces at wave frequencies. The estimates of the two 
nonlinear components of the forces are, however, usually less accurate and only 
available up to second order. 

Especially the low-frequency force is difficult to estimate from the linear the- 
ory. See e.g. Standing (1981). These forces are denoted slowly varying drift 
forces in this paper. 
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All nonlinear effects which can be described by potential theory can be taken 
into account by the approach presented here. This is achieved by the fulfilment 
of the nonlinear boundary conditions at the free surface and integration of the 
nonlinear pressure forces up to the free surface. 

Isaacson (1982) applied a very similar approach, but it was not possible to 
simulate long time series. Scattered waves were reflected back into the domain 
from that part of the boundary, where the incident waves were generated. In 
order to avoid this problem either a very long computational domain or a spatially 
periodic boundary condition has been applied. 

The application of a long domain is very costly as it generates a large system of 
equations and the spatially periodic boundary condition is only an approximation 
in most cases with a body of arbitrary shape. 

If the incident waves are generated inside the computational domain all waves 
reaching the domain boundaries are per definition outgoing waves. At the open 
boundaries these waves can be absorbed and the wave field inside the domain 
is not corrupted by scattered waves reflected at the boundaries. This approach 
was introduced for the BEM method by Brorsen and Larsen (1987) and it makes 
it possible to simulate time series as long as necessary to determine the slowly 
varying drift forces as well as the steady drift force. 

It should be stressed that this approach is applicable in both 2D and 3D 
models. 

The 2D version of the model is used to calculate the drift forces on a rectan- 
gular body in case of regular waves and beating waves. 

The 1. order wave forces on a barge are calculated by the 3D version of the 
model. 

Theoretical formulation 

Fluid flow 

Irrotational flow of an incompressible and inviscid fluid is considered. Therefore 
a velocity potential <p exists, giving the fluid velocity v as 

v = V</> (1) 

The incident waves are generated by a vertical source distribution situated 
between the floating body and the open boundary of the domain. 

The time varying volume flux density of the source distribution is denoted q*, 
and the velocity potential tp must satisfy the Poisson equation 

vV = ?*(£*) (2) 

where ( is the position vector of the source and t is the time. 
Brorsen and Larsen (1987) has described how q* should be varied in space 

and time in order to generate a specified incident wave field. 
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On the free surface the nonlinear kinematic and dynamic boundary conditions 
are fulfilled, i.e. 

du>      1 dn 
a ^=«7    at    z = rl (3) on   cosp      at v ' 

^+9*+\(Vv)2 = 0    at    z = r, (4) 

where (5 is the angle between the outward normal to the free surface and the 
vertical direction, g is the gravitational acceleration, z is the level of the point. 

On the sea bed the no flow condition is used, 

dip 
vn = -~- - 0    at    z = -h (5) 

On the surface of the floating body it is assumed that the body and the fluid 
have the same velocity component in the direction of the normal to the body, i.e. 

dip      _    _ 
— = vb • n    on    Sh (6) 

where v\, is the velocity of a point on the surface of the body and Si denotes the 
instantaneous wetted surface of the body. 
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Figure 1.    Sketch of 2D wave channel and floating body. Still water. 

The domain is enclosed by vertical open boundaries, see Fig 1., where all 
outgoing waves are absorbed. The absorption is modelled with the radiation 
condition: 

dt dn {7) 

where c is the phase velocity. The radiation condition is nonreflecting in case of 
waves of constant form propagating out of the domain. This boundary condition 
is, however, found to be adequate also in case of beating waves provided that the 
wave periods do not deviate substantially from each other, i.e. the rate of change 
in form is rather small. 
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The forces from the fluid on the body is found by integration, 

Fp= f pndS (8) 
JSb 

where Si, denotes the instantaneous wetted surface of the body and p the pressure. 
The pressure is obtained from the nonlinear Bernoulli's equation: 

|+!p! + i(Vrf+8 = o (.) 

where p is the density of the fluid. 
We need to calculate the pressure at points moving with the velocity vpoint- 

In that case, see e.g. Brorsen (1989), equation (9) reads: 

P = -pgz + P -ijj + pvpoim • V<p - g/'CWO2 (10) 

The boundary value problem is transformed into an integral equation by the 
application of Green's 2. identity. 

Thus the potential at point P positioned at x is given by 

a • <p{5i)=js U^^fi ~ G(*,a ^\ dS +JA q*(C,t)G(x>,?)dA (11) 

where S is the boundary of the domain A, £ denotes the position vector of a point 
on the boundary, G(x,£) is a Green function and a is a constant. 

In case of constant water depth and x is situated on the boundary of the 
domain, we use the following Green function: 

2D model   :   a = •K and  G(x,£) = In £ — x + In £ — xr\ 

3D model   :   a = -2TT  and  G(x, |) = -p—^ + -p- 
£-*|      |f 

where xT is the position vector of the point which is the reflection of point P into 
the sea bed. 

Motions of the body 

In 3D the body has the 6 degrees of freedom shown in Fig. 2. Only 3 degrees of 
freedom are present in 2D, namely sway, heave, and roll. 

The motions of the body are found from the equations of motion expressed 
in a coordinate system with origo at the center of gravity (CG) and fixed to the 
body, i.e.: 

YlFe*terna.l     =     m(vG + ti X Va) (12) 

J2 ^external     =     J^+WX(Jw) (13) 
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where VQ is the velocity of CG and u$ is the angular velocity of the body. I is the 
matrix of moment of inertia and m the mass of the body. Fexternai and MexteTnat 
denote external force and moment with respect to CG, respectively. 

The external forces are pressure forces from the fluid, see equation (8), and 
e.g. forces from moorings, fenders and wind. 

Figure 2.    Definition sketch of surge, heave, roll, sway, pitch and yaw. 

Numerical formulation 

A time-stepping technique is used, where the flow problem is solved at each time 
level. Time-dependent terms are discretized as finite differences, and time step k 
is indicated with k as a superscript, i.e. ipk denotes the velocity potential at the 
time t = kAt, where At is the time step. 

The boundary is discretized into N linear (in 2D) or plane (in 3D) elements 
and the variables <p, dip/dn, p and -q are calculated at points situated at the 
centroid (the node) of each element. It is, furthermore, assumed that the variables 
are constant over each element. 

The pressure force on the body is calculated by the discretized version of 
equation (8), i.e. 

Pv- J2PjnidA (14) 
i=i 

where index j refers to a element on the body, p is the pressure at node j and n 
is the unit, outward normal to the body. 

Note that equation (14) is exact if the pressure distribution over each element 
is linear. 

It is now assumed that the flow, the velocity of the body and the position of 
the boundary are known at time step k. The unknown shape of the boundary at 
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time step k + 1 is estimated by a linear extrapolation, see Isaacson (1982). The 
first estimate of the flow at time step k + 1 is found by application of equation 
(11) at each node. This gives N equations, which can be solved together with 
the discretized boundary conditions, see Brorsen and Larsen (1987). After the 
solution <ph+1 and (dip/dn)h+1 are known at all nodes. The pressure pk+i and 
the elevation nk+1 are known at the nodes on the body and the free surface, 
respectively. 

When the values of pk+* are known, updated values of forces and moments 
from the fluid are calculated. This leads to the calculation of improved estimates 
of the position and velocity of the body by use of the discretized versions of 
equation (12) and (13). 

Hereafter the free surface is updated according to the r^+1-values, and the 
TV equations are set up and solved once more. In this study only insignificant 
changes were observed if the procedure was repeated a 3. time. 

In all simulations the fluid is at rest at time t = 0. 

Numerical example, 2D 

The objective of this section is to show that it is possible to calculate the nonlinear 
wave forces on both fixed and floating bodies so accurately that the drift forces 
can be obtained by filtering of the raw force time series. 

Rectangular body exposed to nonlinear regular waves 

In this example a rectangular body with beam b = 20 m and draft d — 8.0 m is 
exposed to regular waves generated at y — 32.5 m. 

The drift forces on both a fixed body and a freely floating body are calculated. 
The incident wave height H is varied between 0.2 m and 0.9 m and the 

applied wave period is constant T = 8.0 sec corresponding to a 1. order wave 
length L = 69.8 m. 

The water depth is 9.6 m and the two open boundaries are radiation bound- 
aries. See Fig. 1. The boundary is discretized into 41 elements, where the element 
length near the open boundaries is 5.0 m decreasing to 2.0 m on the body. The 
time step is At = 0.5 sec corresponding to only 16 steps per wave period. 

The steady drift force on the body is calculated by a low pass filtering of the 
total lateral force found by equation (14). The numerical results are in Fig. 3 
compared with the theoretical second order drift force derived by Longuet-Higgins 
(1977): 

where k = 2ir/L and Hi,Hr,Ht are the incident, reflected, and transmitted wave 
heights, respectively. 

Hr and Ht are estimated by Fourier analysis, and it is found that the numerical 
damping is insignificant, i.e. Hf » H* + Hf. 
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Figure 3.    Comparison of calculated and theoretical steady drift force, 2D 
model. 

From Fig. 3 is seen that the agreement between the numerical results and the 
theoretical solutions are excellent even though a steady drift force is only a few 
percent of the amplitude of the total lateral force (0.6% if Hi = 0.20 ra in case of 
fixed body). Note that the floating body is more transparent to the waves than 
the fixed body. 

Rectangular body exposed to a pair of nonlinear, beating waves 

The mean drift force and the slowly varying drift force on a fixed body are 
calculated. 

The domain and the body are the same as described in the preceding example. 
The two beating waves have each a wave height of 0.4 ra and the periods are 8 
and 10 sec, respectively. This gives a wave group period of 80 sec and the length 
between the nodes of the group is 302 ra. The corresponding slowly varying drift 
force has a period of 40 sec. 

In case of beating waves one must be careful to generate the correct bounded 
long wave in order to avoid spurious free long waves, see Stig Sand (1982). In 
this study this is done by including the velocities corresponding to the bounded 
long wave when the source distribution is calculated. 

Initially it was checked that the correct bounded long wave (amplitude and 
phase) was created and that only insignificant reflection took place at the radi- 
ation boundary. This was done by calculation of the beating waves in a domain 
without the body. The bounded wave amplitude and phase were found by fil- 
tering of the elevation time series at several stations. Excellent agreement was 
found with the theoretical results, probably because the phase velocities of the 
short and long waves do not deviate to much in case of shallow water. 
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Note, however, that in a deep water situation, the larger deviations in phase 
velocities are expected to create a significant reflection on the radiation boundary. 
This will result in both wrong amplitude and phase of the long wave. 

The slowly varying drift force on the body and the corresponding surface 
elevation 1.5 m upstream of the body are shown in Fig. 4. This drift force is 
found by application of a filter with a cut-off frequency of 0.04 Hz. 

The mean value of the drift force is calculated to —0.59 kN/m. Note that 
the mean value of the drift force only deviates 2% from the theoretical value, 
—0.60 kN/m, which is the sum of the steady drift forces corresponding to the 
individual regular waves. 

2.00 

1.00   -- 

o.oo  -A. 

£ -1.00 

m 

-2.00 

Legend: 
Surface   elevation 
Drift  force 
Mean  drift  force 

2.00 

£ o o u 
-1-00 ft° 

-2.00 
60 80 100 120 140 160 180 

Time  (sec) 

Figure 4.    Slowly varying drift force on a fixed body. 2D model. 

From Fig.4 is seen that the maximum drift force (negative) appears later than 
the maximum elevations in the wave group. 

According to Newman's approximation the maximum drift force (negative) 
should appear at the same time as the max. elevations in the wave group. How- 
ever, when the effect of the surface gradient of the bounded long wave is taken 
into account, it must be expected that the maximum drift force appears later 
than the maximum surface elevations and increase in magnitude. 

The amplitude of the slowly varying drift force is seen to be approx. 30% 
bigger than the corresponding value according to Newman's approximation, which 
in this case is equal to the mean drift force. 

A full verification of the computed results, e.g. by comparing the result with 
results from a theoretical 2. order model, see Faltinsen (1979), has not been made 
so far. 
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Linear 3D-Model (BEMSHIP) 

At the Danish Hydraulic Institute a 3D model has been developed. This model 
calculates the motions in six degrees of freedom of a floating body. So far this 
model is based on the linearized equations, but non-linear mooring forces and 
fender forces can easily be included. 

3D ship movements calculated by BEMSHIP are in the following compared 
to some test values, see Ostergaard (1987). 

The 'ship' selected is a rectangular barge representative for a vessel frequently 
used by the offshore industry as a lay barge or crane vessel. The main particulars 
for the barge are listed in Table No. 1 below. 

Length (m) 150 
Beam (m) 50 
Draft (TO

3
) 10 

Displaced volume (ra) 73750 
C.G. above base (TO) 10 
Transverse gyradius (TO) 20 
Longitudinal gyradius (TO) 39 
Vertical gyradius (TO) 39 
Natural heave period (sec) 10.4 
Natural pitch period (sec) 12.1 
Natural roll period (sec) 9.4 

Table 1. Particulars of rectangular barge. 

The discretization of the barge can be seen in Fig. 5. 

Figure 5.    Sketch of wetted surface of the barge. xy-p\a,ne situated in SWL. 

In the following calculations the barge is floating freely in all six degrees of 
freedom and it is exposed to regular, linear beam waves. The incident waves are 
generated within the calculation domain. 
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The sway, heave and roll motion transfer functions are plotted in Fig.  6-8, 
where they are compared to the experimental values obtained by Ostergaard. 
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Figure 6. Comparison of 
calculated and experimental 
sway motions of the barge 
in beam waves. ay and a,- 
are the amplitude of sway 
and the incident wave, re- 
spectively. 

Figure 7. Comparison of 
calculated and experimental 
heave motions of the barge 
in beam waves. az and a,- 
are the amplitude of heave 
and the incident wave, re- 
spectively. 

Figure 8. Comparison of 
calculations and experimen- 
tal roll motions of the barge 
in beam waves. awx and a,- 
are the amplitude of roll and 
the incident wave, respec- 
tively, k is the wave number 
k = 2-KJL. 
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The barge is again floating freely, but is now exposed to regular, linear head 
waves. 

The surge, heave and pitch motion transfer functions are plotted in Fig. 
9-11, where they again are compared to the experimental values obtained by 
Ostergaard. 
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Figure 10. Comparison of 
calculated and experimental 
heave motions of the barge 
in head waves. az and a; 
are the amplitude of heave 
and the incident wave, re- 
spectively. 
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When looking at the calculated and experimental measured barge motions in 
Figs. 6-11, a good agreement is found despite the rather low spatial resolution 
(10 • 10 m2) of the body. Wave periods lower than 11 sec. are not used, as a 
spatial resolution of at least 16-18 elements per wave length is needed. 

Conclusion 

A new approach to the calculation of nonlinear drift forces on large bodies is 
reported. The numerical model is working in the time domain and the drift 
forces are calculated by filtering of long time series of the nonlinear lateral wave 
force acting on the body. 

The nonlinear 2D version of the model is used to calculate steady drift forces 
as well as slowly varying drift forces. 

Excellent agreement is found between the numerical results and the corre- 
sponding analytical solutions when the steady drift force (regular waves) and the 
mean drift force (beating waves) are considered. 

In case of beating waves the preliminary results indicates that the amplitude 
of the slowly varying drift force may be somewhat underestimated by Newman's 
approximation. 

An improved modelling of the absorption of the wave energy at the open 
boundaries is, however, probably required if the forces corresponding to deep 
water, irregular waves are to be calculated satisfactorily. 

The linear version of the 3D model BEMSHIP is shown to yield good estimates 
of the motions of a freely floating barge exposed to head or beam waves. 
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