
CHAPTER 236 

EXTENSION OF THE BOUSSINESQ EQUATIONS TO INCLUDE WAVE 
PROPAGATION IN DEEPER WATER AND WAVE-SHIP INTERACTION 
IN SHALLOW WATER. 

Per A. Madsen1 and Ole R. S0rensen2 

1.    INTRODUCTION 

Mathematical short wave models based on the 
Boussinesq equations have been shown to be capable of 
reproducing the combined effects of most of the wave 
phenomena of interest to the coastal engineer for a 
relatively low cost. Today, the following phenomena 
can be taken into account in the most advanced numeri- 
cal wave models: 

o Shoaling, refraction, diffraction 
o Partial reflection from breakwaters 
o Irregular wave trains 
o Directional wave input 
o Wave-wave and wave-current interaction. 

In this presentation the standard Boussinesq equations 
will be extended for two different purposes: 

o    To simulate irregular wave propagation from deep 
to shallow water 

o   To simulate wave-ship interaction in shallow 
water. 

Section 2 will cover the first topic. The depth 
limitation of the standard forms of the Boussinesq 
equations will be discussed. It is shown that the 
worst form of the equations breaks down for depth to 
deep water wave length ratios (h/L0) larger than 0.12 
while the best forms are limited to say 0.22, corre- 
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sponding to a 5% celerity error. In order to improve 
these limitations a new form of the Boussinesq equa- 
tions is presented. With the new equations it is 
possible to simulate the evolution of irregular wave 
trains propagating from deep water to shallow water. 
In deep water, the new equations become effectively 
linear and phase celerities agree with Stokes first- 
order theory. In more shallow water, the new equations 
converge towards the standard equations which are 
known to provide good results for waves up to at least 
75% of their breaking height. The combination of a 
linear wave model in deep water and a non-linear wave 
model in shallow water is justified by the fact that 
waves which are non-breaking in shallow water will be 
only weakly non-linear in deeper water. More details 
can be found in Madsen et al. (1990). 

In the second part of this paper (Section 3) a 
new solution method for calculating wave-ship interac- 
tion in shallow water is presented. The ship motion is 
represented by six degrees of freedom and roll and 
pitch angles are assumed to be small, while there is 
only physical limitations on the other four displace- 
ments of the ship. The model which is still under 
development has the potential of solving the following 
types of wave-ship interaction problems: 

a) Wave induced motion of ships moored in harbours 
or at unprotected installations, e.g. at single 
point moorings 

b) Wave generation and wave resistance due to ships 
sailing in calm water or in wave fields. 

A general outline of the principles used in the 
development is given in Section 3 while details 
concerning theoretical formulations and numerical 
solution procedures can be found in Madsen (1990). 

2.    IMPROVEMENT OP THE DEPTH-LIMITATION OF THE 
BOUSSINESQ EQUATIONS 

As discussed by McCowan (1987) a variety of 
different forms of the Boussinesq equations exists. 
Firstly the dependent variables can be chosen in 
different ways, and typical velocity variables are the 
surface velocity, the bottom velocity, the depth- 
averaged velocity or the depth-integrated velocity. 
Secondly the dispersive terms can be manipulated by 
invoking the long wave equation as a first approxima- 
tion. 
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A natural starting point for the derivation of 
the different forms of Boussinesq equations is the 
depth-integrated continuity equation and the Bernoulli 
equation for the surface velocity (see e.g. Witting, 
1984). In order to close the equations, a relation 
between the depth-averaged velocity and the surface 
velocity is necessary. The classical way to do this is 
to apply Taylor expansion about the bottom and to 
express the horizontal velocity in terms of the bottom 
velocity (see Svendsen, 1974 or Witting, 1984) . As 
shown by Madsen et al. (1990) three different forms of 
the Boussinesq equations can be derived in this way. 

The first form is expressed in terms of the 
bottom velocity, U. : 

St + h Ub " i h" Ub 
X XXX 

= 0 

(1) 

Ub  + gSX " 2 h2 Ub °t      X    ^      Dxxt 
= 0 

where S is the surface elevation and h the still water 
depth. 

The second form is expressed in terms of the 
surface velocity, U  : 

s + h us + f h3 us 
x xxx 

U  + gS  = 0 st  * x 

= 0 

(2) 

The third form is _expressed in terms of the 
depth-averaged velocity, U : 
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st + h ux = 0 

Ut + <?Sx - I h' Uxxt = ° 

(3) 

In principle, this is the form used by Abbott et al. 
(1984) and suggested by Whitham (1973). 

The dispersion relation corresponding to a 
specific form of the equations can be obtained by 
considering solutions of constant form. It turns out 
that the resulting phase celerities can be expressed 
by 

2 2 2 
c      1 + Bk h 
gh  1 + (B + f)k2h2 

(4) 

where 

B = 
1/6 for  Eq. (1) 

-1/3 for  Eq. (2) 
0 for Eq. (3) 

Notice that each form of the equations leads to a 
different celerity expression, but for small wave 
numbers all the derived expressions converge towards 
the Stokes first-order theory for waves on arbitrary 
depth, which for this purpose will be considered as 
the exact solution. As the wave number increases, the 
various celerity expressions become more and more 
inaccurate relative to the Stokes theory. 

The percentage errors of the phase celerities 
are shown in FIG 1 as a function of h/L0 : Firstly, 
Eq. (1) appears to have the poorest phase properties, 
and for h/L0 > 0.12 solutions to the dispersion rela- 
tion cannot be found. As remarked by McCowan (1987), 
this corresponds to the depth limitation for cnoidal 
wave theory. Secondly, Eq. (3) has the best phase 
properties of the standard Boussinesq equations. This 
is the form recommended by Whitham (1973) and applied 
by most of the existing numerical models today. The 
absolute water depth limit beyond which solutions to 
the dispersion relation cannot be found is h/L0 = 0.48. 
However, in order to restrict phase errors to, say, 5% 
the practical upper limit for h/L0 reduces to 0.22, 
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which corresponds to the water depth limit determined 
numerically by McCowan (1981). 

For many applications, a less restrictive water 
depth limitation is desirable. This requirement of an 
improved linear dispersion property in deeper water 
was addressed by Witting (1984), who presented a new 
set of equations valid for a single horizontal dimen- 
sion. As shown by Madsen et al. (1990) the linear 
reduction of Witting's equations leads to a phase 
celerity on the form of Eq. (4) with B = 1/15. This 
leads to a significant improvement of the depth- 
limitation, and for h/L0 as large as 0.50 celerity 
errors are still restricted to approximately 5% (FIG 
1). 

The group velocities corresponding to the vari- 
ous forms of the Boussinesq equations can easily be 
derived from Eq. (4), which yields 

1 + BkV 
? 2 

1 + Bk h 

1  2 2 (B + j)k*V 

1 + (B + j)k2h2 
(5) 

The percentage errors compared to Stokes first- 
order theory are shown in FIG 2. The errors are 
surprisingly large even for relatively shallow water. 
By restricting the percentage errors to, say, 6% the 
practical water depth limitations become 

h/L 

0.055 for B = -1/3 
0.12 for B =  1/6 
0.13 for B =  0 
0.32 for B =  1/15 

Again Witting's method is superior to the stan- 
dard forms of the Boussinesq equations. Unfortunately, 
it turns out to be very difficult to generalize 
Witting's approach to two horizontal dimensions. 
Instead we have formulated a new set of Boussinesq 
equations which meet the following requirements: 

a) The equations should be expressed in two-hori- 
zontal dimensions in terms of the surface elev- 
ation and the depth-integrated velocity compo- 
nents. 
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Fig. 1  Percentage error of the phase celerity. 
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b) The resulting linear dispersion characteristics 
should follow Eq. (4) where the coefficient B 
can be chosen explicitly to improve accuracy in 
deeper water. 

The following equations meet these requirements: 

St + Px + Qy = 0 (6a) 

Pt + Rr)x + [W)y  + 9dSx " <B+f> h2(Pxxt + Qxyt) 

" Bgh3(Sxxx+ Sxyy) = ° <6b> 

«t + (d-]y + (?)x + <?dSy " <B+!> h2(Qyyt + Pxyt) 

- Bgh3|S   + S  I = 0 (6c) y I yyy  yxxj v ' 

where d is the total water depth, h is the still water 
depth, and P and Q are the depth-integrated velocity 
components (m2/s). Notice that in extremely shallow 
water, where the long wave equations are valid as a 
first approximation, the new equations will converge 
towards the standard Boussinesq equations. 

FIG 3 shows the effect of applying the new equa- 
tions. The bichromatic wave considered is comprised by 
a 2.5 s wave (h/L0 = 0.43) and a 3.0 s wave (h/LD = 
0.30) each having an amplitude of 0.05 m. In the 
standard model (i.e. with B = 0) the group celerity 
errors are -90% for the 2.5 s wave and -44% for the 
3.0 s wave. Hence, especially the 2.5s wave is slowed 
down so much that the resulting time series taken at a 
position only 12 m down the channel almost looks like 
a monochromatic wave, at least until the 2.5 s wave 
eventually reaches the point and re-establishes the 
bichromatic wave pattern. In the new model with the 
coefficient B = 1/21, the wave train travels down the 
channel almost undisturbed. 

More details, especially concerning the numeri- 
cal solution procedure, are given by Madsen et al. 
(1990) . 
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Fig. 3  Bichromatic wave test 
a) Standard Boussinesq model (i.e. B = 0) 
b) New model (B = 1/21) 
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3. SIMULATION   OP   WAVE-SHIP   INTERACTION   IN   SHALLOW 
WATER 

The second topic in this paper represents a 
natural step forward in the development of the Boussi- 
nesq type models by including the interaction between 
waves and moored or sailing ships in shallow water. 
Details concerning the theoretical formulations and 
the numerical solution procedure will not be given 
here but can be found in Madsen (1990) . Instead a 
general outline of the general principles will be 
given below. 

Depth-integrated flow equations in the time- 
domain are formulated to describe the free surface 
flow beside the ship as well as the pressurized flow 
under the ship. A slot-technique is used to combine 
the two flow regimes into a single set of equations 
expressed in terms of the depth-integrated velocity 
components and the local pressure height. This tech- 
nique is similar to the one used by Preissmann and 
Cunge (1961) for modelling pressurized flow in con- 
duits. The excess pressure, depth-averaged over the 
underkeel clearance, is used to determine the hydrody- 
namic forces and moments on the ship. This approxima- 
tion is valid in shallow water and especially if the 
underkeel clearance is small. The local wave gener- 
ation due to the moving ship is taken into account by 
distributing sources on the ship hull and including 
the effect in the continuity equation. The ship motion 
is represented by six degrees of freedom using one 
coordinate system, which is fixed relative to the 
moving ship and one, which is fixed relative to the 
surrounding bathymetry. Both systems are rectangular 
but the grid spacing can be different. First of all, 
the ship is described in the ship coordinate system by 
defining two-dimensional maps of ship draft and ship 
slot factors. A slot factor of 0.01 will indicate 
solid ship body, while a factor of 1.0 indicates an 
open water point. Normal vectors defining the ship 
elements will be determined in each ship grid point. 
When the ship moves around in the harbour coordinate 
system, the ship slot factors in this system will 
change from time step to time step indicating the new 
position of the ship. A simple interpolation routine 
is used to determine the successive ship configur- 
ations in the harbour coordinate system during the 
motion. This requires the roll and pitch angles to be 
small, while there is only physical limitations on the 
other four displacements of the ship. 
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The depth-integrated formulation makes the model 
very efficient and even though it is solved directly 
in the time-domain the computer economy is quite 
reasonable: The speed of the model is approximately 
1200-1500 points/s on an IBM 4381 depending on the 
ratio of ship points to clear water points. A typical 
grid size will be from 1 to 5 m, depending on the beam 
of the ship, and a typical time step will be 0.1 to 
0.2 s. 
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Fig. 4  Forced roll motion: Flux envelope. 

One of the key problems in the model development 
has been the internal wave generation due to the 
motion of the ship. The resulting pressure and vel- 
ocity distribution on the ship hull has to be accurate 
in order to take added mass and wave damping effects 
proper into account. In order to test this the forced 
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harmonic motion of a box shaped ship has been con- 
sidered. Simple analytical solutions for this problem 
were derived by Svendsen & Madsen (1981) and Madsen et 
al. (1980) and they concluded that 

a) The forced sway motion leads to a linear pres- 
sure distribution and a constant flux distribu- 
tion in space. 

b) The forced heave motion leads to a parabolic 
pressure distribution and a linear flux dis- 
tribution in space. 

c) The forced roll motion leads to a cubic pressure 
distribution and a parabolic flux distribution 
in space. 

The internal wave generation in the Boussinesq model 
has been verified against these analytical distribu- 
tions. As an example the simulated flux envelope for 
forced roll motion is shown in FIG 4 comprising of 
sixteen instantaneous line plots covering one period 
in the forced motion. 
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Fig. 5  Response curve for wave induced heave. 
Draft = 8.0 m, Beam = 20 m, Depth = 10 m. 
- Theory by Svendsen & Madsen (1981) 
• Boussinesq model. 
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An example of wave induced motion of a moored ship is 
shown in Fig. 5 where the response curve for heave 
motion has been compared with the analytical solution 
by Svendsen and Madsen (1981). 

Finally, Figs, 6, 7 and 8 show examples of perspective 
plots of the wave field surrounding a moored ship 
(Fig. 6), the wave field generated by yaw extinction 
(Fig. 7) and the wave field generated by a sailing 
ship which is accelerating from rest to a maximum 
speed of 20 knots in 14 m of water depth. 

WAVE DIRECTION 

Fig. 6 Moored ship in cross waves. 

Fig. 7  Yaw Extinction test. 
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Fig. 8  Sailing ship in calm water. 
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