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Abstract 

Identification of the Morison equation force coeffi- 
cients Cm & C<j depends on the condition of the wave for- 
ce/kinematic data. For simple harmonic kinematics, the 
data are equally conditioned for identifyinq Cm & C<j at 
the critical value of the period parameter (K = UmT/D) 
defined by Keuleqan and Carpenter (1958). Critical values 
for K are = 11.4 from geometric interpretations and = 13.16 
from numerical interpretations. Stable transverse lift 
forces may also be shown to correlate with the critical 
values of K from the physical interpretation of the period 
parameter qiven by Keulegan and Carpenter (1958). Data 
from three different types of physical experiments are used 
to demonstrate the importance of the condition of the data. 

Introduction 

The Reynolds parameter (R = UmD/v) and the Keulegan- 
Carpenter parameter (K = UmT/D) are the two parameters that 
are most often used to parameterize the two empirical force 
coefficients Cm and C^ used in the Morison equation (Dean 
and Dalrymple, 1981 & 1984). Dean (1976) recognized the 
importance of the condition of the data when identifying 
these two empirical force coefficients from wave force 
data; but he did not correlate the condition of the data 
with these two parameters. The Dean error ellipse dem- 
onstrates geometrically the condition of data for iden- 
tifying Cm and C<j by the alignment of the axes of the error 
ellipse as illustrated in Fig. 1. 
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Fig. 1 Dependency of Dean Error Ellipses on W l/d|/|/. 
The data are relatively better-conditioned for iden- 

tifying the empirical force coefficient Cm or Cd on the 
axis that is parallel to the semi-minor axis of the error 
ellipse. Dean (1976) correlated the alignment of the axes 
of these error ellipses with the dimensionless O'Brien 
force ratio (1952) W = |/d|/|/J; but not with either the 
Reynolds or Keulegan-Carpenter parameters. Hudspeth and 
Nath (1990) demonstrated that the Dean eccentricity 
parameter E is proportional to the Keulegan-Carpenter 
parameter K for kinematic data that are simple harmonic. 
Consequently, the Dean eccentricity parameter E connects 
the alignment of the semi-minor axis of the error ellipse 
to the parametric dependency of Cm and Cd on K. When E = 
1.0, then K = 11.40 and the error ellipse is a circle with 
zero eccentricity. 

The Dean error ellipse (1976) may be extended to include 
errors in the amplitudes/phases of the kinematics. This 
extension to include errors in amplitudes/phases demon- 
strates geometrically the parametric dependency of cra and 
Cd on the parameter K (or E) by the magnitude of the slope 
of the contours of the dimensionless O'Brien force ratio 
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W = |/d|/|/m| passing through the origin for zero error in 
phase. The advantage of the amplitude/phase error method 
is that the separate plots required by the Dean error 
ellipse method for each constant value of W = |/d|/|/m| 
shown in Fig. 1 may be replaced by a single graph with 
contours of constant values of W. Comparisons of the 
amplitude/phase analysis with synthetically phase-shifted 
laboratory data for E < 1.0 or K < 11.40 and for E > 1.0 
or K > 11.40 are excellent for phase shifts in the range 
of |oot | < it/ 8. 

Data condition is defined as the ability of a least- 
squares algorithm to locate a global minimum on an error 
surface for given wave kinematic/force data (cf. Marquardt, 
1963) . This geometric definition is related to the numerical 
matrix condition number (cf. Atkinson, 1989). The matrix 
condition number is computed by four standard measures for 
the Morison equation. The matrix condition number is 
identically equal to unity when K =  13.16 and E =  1.15. 

Geometric Interpretations 

1) Dean error ellipses: The mean squared error e2 

between the "true" force per unit length (denoted by upper 
case unprimed letters) F(8) and the "computed" force per 
unit length (denoted by lower case primed letters) f'(6) 
may be estimated from 

E
2
  =  <[F(e)-r(Q)]2> (i) 

where 0 = 2nt/T ; T = wave period; and the temporal 

averaging operator <(•)> is 

i  r2n 

<(•)> = :r-  (Ode 
znJo 

If the "computed" force per unit length is given by the 
Morison equation 

f'(6)  - fm(G) + fd(6) 

= kmu(9) + kdu(6)|u(e)|  (2a) 

then the "computed" inertia and drag constants are, 
respectively 

km    =    Cm[pjtD2/4]   ;        kd   =    Cd[pD/2] (2b) 
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When simple harmonic kinematics are used in Eg.(2a), 
Eq.(1) becomes a conic section equation for an ellipse 
whose origin has been translated and axes rotated (Hudspeth 
and Nath, 1990; and Thomas, 1965) 

(aX)2  + 2HXY + (f3Y)2 + 2GX + 2JY + C = 0  (3) 

where X = Cd and Y = Cm . 

Equation (3) may be written in a form that is more 
familiar for an ellipse according to (Dean and Dalrymple, 
1984) 

(X-XJ2    (Y-YJ2 

(R/a)2    (R/(3)2 
= 1 (4) 

The eccentricity of the error ellipse may be expressed 
in terms of the Dean eccentricity parameter E or the 
Keulegan-Carpenter parameter K or the O'Brien force ratio 
W by (Hudspeth and Nath, 1990) 

a V 3 ^ m V 3 
E   = - = -^-K   -    — — U (5) 

(3    2it2     Cd 2 
K   J 

When K - 2«2/^ » 11.40 then E = 1.0 and the error 
ellipse is a circle and the data are equally conditioned 
for identifying both Cm & C^. The eccentricity e2 of the 
error ellipse determines geometrically the condition of 
the data for identifying Cm & C<j. The eccentricity e2 may 
be expressed by 

e2 = 1.0-El")2 (6a, b) 

where +2 is to be used when E < 1.0 and -2 is to be used 
when E > 1.0. Equations (6) imply that a separate error 
ellipse plot will be required for each constant value of 
the O'Brien force ratio W  (vide Fig. 1 and Dean, 1976). 

Specifically, when E < 1.0, then K < 11.40 and the 
semi-minor axis of the error ellipse is parallel to the Cm 
axis. Conversely, when E > 1.0, then K > 11.40 and the 
semi-minor axis is parallel to the C^ axis. Note that a 
value of K -11.40 is approximately the value of K at 
which the peak in Cjj and the trough in Cm occur in the 
replotted Keulegan-Carpenter data shown in Fig. 2 (cf. 
Sarpkaya and Isaacson, 1981 and Chakrabarti, 1987). 
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Fig. 2 Correlation of Replotted Keulegan-Carpenter Data 
with Dean Error Ellipses 

2) Amplitude/phase analysis: Hudspeth, et.al. (1988) 
extended the Dean error ellipse method to include the 
effects of errors in amplitudes and phases of the wave 
force/kinematic data. This extension eliminated the need 
for separate error ellipses for each constant value of 
the O'Brien force ratio W. 

Minimizing Eq.(1) with respect to the computed coef- 
ficients Cm and Cdyields 2 equations which may be rearranged 
to give the following dimensionless inertia coefficient em 
and drag coefficient ed ratios for small values of the 
phase shifts \<x>x\~0   : 
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em « K[1-(8W3JI)CA>T;] 

£d « F2[l + (32/9jt)(o)-r/l/)] 

with slopes near the origin given by (approximately) 

dem (3WV' 

3(oox) 3it 

32 

9K 1/ 

(7b) 

(8a) 

(86) 

where V = dimensionless velocity amplitude ratio. Note 
that it is not necessary to construct a separate error 
ellipse for each constant value of the O'Brien force ratio 
W. 

Figure 3 compares Eqs. (7&8) with synthetically 
phase-shifted experimental data for W = 0.49 (or E < 1.0) 
and for W = 2.32 (or E >  1.0) . 

3 

C*J  f (radians) 

Fig. 3 Comparisons of em & ed  with Synthetically Phase- 
Shifted Laboratory Data (Hudspeth and Nath, 1990) 
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Numerical Interpretations 

Scaling the variables in Eq. (1) by the following: 

F u u 
F - 

pDa' 
u 

u = — 
a 

u = 
auo 

where a = amplitude of the "computed" velocity; u) = 2n/T; 
and minimizing Eg. (1) with respect to Cm and Cd gives 
the following scaled (or nondimensional) matrix equation 

AX = B 
where the scaled matrices are 

4JX
2 

A - 

(9) 

3K 
0 

0 

1 
£«/3 
0 

0 

1 

X = B - 
16 
3 

<Fii> 
<Fu|u| > 

Matrix A is Hermitian and unitary. It becomes a unit 
matrix with matrix condition numbers identically equal to 
unity when K   =    4n2/3 « 13.16 and E   = 2/^3 * 1.15. 

Table 1. Summary of Matrix Condition Numbers. 

Matrix 
Condition K <   13.16 K =   13.16 K >   13.16 K =   11.40 

Number E  <   1.15 E =   1.15 E  >   1.15 E =   1.0 
(1) (2) (3) (4) (5) 

Cond(A)! 

Cond(A)„ 4n2       2 1.0 3K     E-J3 1.15 
Cond(A)2 3K     £-^3 4n2       2 
Cond(A), 
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The four standard matrix condition numbers listed in 
column 1 of Table 1 are defined as follows (Atkinson, 1989) : 

Cond(A); 

Cond(A)!    =    Cond(A), 

Max|\| 
\eo[A*A] 

Min|X| 
Aea[A*A] 

A 

Cond(A), 

A" 

Max|\| 

X.ea[A] 

Min|X,| 

\ea[A] 

where ||-|| = a matrix norm; A" = matrix inverse; A. = 
eigenvalue of the matrix A; 0[-] = spectral radius of the 
matrix [•]; and A* = complex conjugate transpose. 

Stable Transverse Lift Forces 

Keulegan and Carpenter (p. 439, 1958) gave a physical 
interpretation of their period parameter in terms of the 
distance traveled in one direction by a fluid particle in 
the absence of the cylinder. Accordingly, this definition 
lead to the ratio between the wave period T and the eddy 
shedding period Ts being equal to the product between the 
Strouhal parameter 5 and the Keulegan-Carpenter parameter 
K;   or 

T 
— - S-K (10) 

When this ratio is exactly equal to two, then exactly 
two vortices will be shed during one wave period and the 
transverse lift force will be stable (Keulegan and Car- 
penter, 1958) . For normal wave conditions, 0.18 < .S < 0.20 
and K   ~ 11 when the ratio T/Ts « 2. 

Data are available that correlate with the critical 
values of the Keulegan-Carpenter parameter K computed from 
both the geometric and the numerical interpretations. The 
only stable transverse lift force seen in the Hayashi and 
Takenouchi data (1979) shown in Fig. 4 occurs when K= 11.8 
which is approximately the critical value of K determined 
from geometric considerations. 
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Fig. 4 Transverse Lift Forces on Vertical Circular Cylinders 
(Hayashi and Takenouchi, 1979) 

The only stable transverse lift force seen in the Maull 
and Milliner data (1979) shown in Fig. 5 occurs in Run 145 
when K = 13.02 which is approximately the critical value 
of K determined from numerical considerations. 

~4^~-~^ f- 

RUN  131' K=30.8 RUN 129' K= 28.76 

W-ffc- 

RUN   133' K = 17.18 RUN   145' K= 13.02 

Fig. 5 Forced In-Line Motions and Transverse Lift Forces 
on a Vertical Circular Cylinder Oscillated in Still 
Water (Maull and Milliner, 1979) 
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Conclusions 

The critical values of the period parameter K = UmT/D 
identified by Keulegan-Carpenter (1958) are shown to 
correlate with: 1) wave force/kinematic data that are 
equally conditioned for identifying Cm & C<j; and 2) stable 
transverse lift forces. The effects of the condition of 
the data on the inertia and drag coefficients Cm & C$ are 
evaluated from two geometric and one numerical interpre- 
tations. The two geometric interpretations of the condition 
of the data proposed by Dean demonstrate that when the Dean 
eccentricity parameter E equals unity, the data are equally 
conditioned for determining Cm & C^. For simple harmonic 
data, the Dean eccentricity parameter may be shown to be 
proportional to the Keulegan-Carpenter parameter; i.e., E 
= <j3K/2n2 . When E = 1.0, then K = 11.40 and the Dean 
error ellipse is a circle with zero eccentricity. The 
numerical interpretation of the condition of the data 
demonstrates that when the matrix condition number of the 
2X2 matrix used to compute Cm S C,j in a best least-squares 
sense becomes identically equal to unity then K ~ 13.16 
and E " 1.15. Stable transverse lift forces occur when 
the ratio of the wave period T to the period of eddy shedding 
Ts is exactly equal to two. For a Strouhal parameter 0.18 
< S< 0.20 and T/Ts = 2, K ~ 11. Three sets of experimental 
data are compared with the two geometric and one numerical 
analyses and with the stable transverse force hypothesis. 
These experimental data represent three very different 
physical conditions; viz., 1) a horizontal circular cylinder 
located at the node of standing surface gravity waves, 2) 
a vertical circular cylinder in propagating surface gravity 
waves, and 3) a vertical circular cylinder forced to 
oscillate in otherwise still water. 
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