
CHAPTER 110 

A Model for Breaking Wave Impact Pressures 

M.J. Cooker* and D.H. Peregrine^ 

Abstract 

This paper discusses a mathematical model of the large, 
short-lived pressures brought about by waves breaking against 
coastal structures. The idea of pressure impulse, P (the integral 
of pressure with respect to time from the start to the finish of 
the impact) is used to simplify the equations of ideal 
incompressible fluid notion. P satisfies Laplace's equation in a 
domain which is the mean position of the wave during the very 
short time of impact. We solve analytically a two-dimensional 
boundary - value problem, which models an idealized wave striking a 
vertical wall. Expressions are derived for the impulse on the 
wall, the peak pressure distribution, and the change in fluid 
velocity due to impact. The results are insensitive to the shape 
of the wave far from the wall. The results agree with some 
experimental measurements, from the literature. 

Introduction 

This paper is concerned with the very large and sudden 
pressures exerted by a breaking wave when it slams into a solid 
surface. 

Winter storms in February 1990 caused great damage to sea 
walls on the UK coast, and there is a long-standing need to 
understand how breaking waves are able to exert loads on vertical 
walls, and other structures. Many field measurements and 
experimental studies since Bagnold (1939) have shown the existence 
of peak pressures exceeding 10 times the hydrostatic head and 
which last for periods between 0.1 and 10 milli-seconds (depending 
on the size of the wave). Figure 1 shows a typical pressure-time 
curve, for a point on a vertical wall. Blackmore and Hewson 
(1984) measured impact pressures in the field and high, 
short-lived loadings have been recorded on sloping beaches 
(Richert, 1968; Griine, 1988). 

*Research Assistant.    fProfessor. 
School of Mathematics, University of Bristol, University Walk, 
Bristol, BS8 1TW, England. 

1473 



1474 COASTAL ENGINEERING -1990 

Pressure    (tonnes   j-orce/^,2) 

I 

I- 

--Area = 

Pressure    impulse ^ P. 

00ms) 
Figure 1. 

Figure 2. Sketch of wave steepening in shoaling water. A 
vertical face at the moment of impact, gives the 
highest peak impact pressures. 
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A full review of the literature is given by Cooker (1990, 
chap.6), and here we highlight the laboratory studies of Bagnold 
(1939), Nagai (1960) and Weggel and Maxwell (1970), all concerned 
with vertical walls. Current empirical engineering rules for peak 
pressure distribution pPK at a vertical wall are summarized by 
Partenscky (1988). All these studies suggest that pPK varies up 
and down the wall with a clear maximum near the water-line and a 
decrease toward the bed. Computations by Cooker and Peregrine 
(1990) reproduce these pressure distributions. 

This paper puts these empirical rules on a rational basis by 
using the theory of pressure impulse, (Lagrange 1783), 

rt a 
P(x,y) =   p(x,y,t)dt (1) 

Jtb 

where tb and ta are the start and finish times of the impact. See 
figure 1. 

Many experimenters have noted that under fixed wave conditions 
there is wide scatter in peak pressure. Bagnold (1939) pointed 
out that, despite the variations in pPK (and in the impact time, 
At ~ twice pressure rise time), the product pPK At remains roughly 
constant; 

P = PPK ^ (2) 

is an approximation to the definition of P in equation (1). Given 
the unavoidable difficulty of predicting pPK, in this paper we 
suggest that pressure impulse is a more convenient concept, 
especially from a mathematical viewpoint. Below we show that 
P(x,y) satisfies Laplace's equation within a fluid domain which is 
the mean position of the fluid during the short time of impact. 
Armed with an analytic expression for P, and an estimate of the 
impact time At, we can use (2) to arrive at reasonable predictions 
for peak pressure distribution. 

An advantage of this approach is that it allows us to model 
impact pressures due to even turbulent waves and, so far as P is 
concerned, the fluid can even be slightly aerated. The method can 
also be applied to more complex and three-dimensional wave impacts 
such as waves hitting a vertical cylinder. This is the subject of 
further work in progress. 

Mat h e in at i c a 1 Model 

We consider a wave in shoaling water approaching the shore 
from deeper water, and we expect typically the wave to steepen and 
break with a height possibly greater than the local still water 
depth, and with a speed greater than the maximum local wave speed 
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1 

(gh)^. Experiments show that the highest impact pressures occur 
when the wave face is vertical at the instant it strikes the wall. 
See figure 2. 

We return to this specific problem below, but first consider a 
body of water striking a rigid surface. Let the impact speed be 
typically U0, and the length-scale of the body of water be LD. 
Let At be the impact time. Let U„, LQ, At, p0 be independent 
velocity, length, time and pressure scales for the variables in 
Euler's equations, for two dimensional inviscid, incompressible 
flow. After some manipulation we arrive at an equation in 
diraensionless variables U, t, p, x, y 

^      Atu° (U-V)U = "Atp° Vp        (3) 
— + —^— v^ / M       yj y ^ 
a*.     IJO pfol'o 

where V = (d/dx, d/dy). 

Typically AtU0/L0 is very small (~0.03 in the computations of 
Cooker and Peregrine, 1990). The smallness of this dimensionless 
group enables us to discriminate between events which are "impact" 
and those which are not. If Atp0/pUoL is 0(1) then we have a 
balance between the first and last terms in equation (3), and the 
nonlinear 2nd term can be neglected. 

We now integrate (3) with respect to time from t = tb to 
t = ta, the duration of the impact. Returning to dimensional 
variables in (3) this gives us 

— dt = 
tb dt ""'{J p     LJ 

fta 
p dt 

tb 

ces to 

Ua   • ub = ^ - VP 

From (1) this reduces to 

(4) 
P w 

where Ub and Ua are the fluid velocities at times immediately 

before and after the impact, respectively. 

We will also assume that the flow is incompressible so that 
both V-Ub and V-IJa vanish. Taking the divergence of (4) we arrive 

at Laplace's equation in the pressure impulse P 

V2P(x,y) = 0. (5) 

Note that (5) does not involve time so we must solve boundary- 
value problems in a fixed domain which is a mean position for the 
fluid during impact.  Finally note this theory admits arbitrary 
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vorticity and can be extended to 3 dimensions. 

Boundary-Value Problem. 

Let us turn to the 2 dimensional problem in figure 3 for water 
wave impact on a vertical wall. Given Ub we want to know P(x,y) 

by solving (5) with appropriate boundary conditions, and then use 
(2) to find the peak pressure distribution. Also equation (4) 
gives us Ua, the flow immediately after impact; once we know P. 

The boundary condition at the free surface is P = 0 because 
the pressure is a constant (zero) there. At the bed the vertical 
component of velocity V = 0 throughout the impact, so Va = Vb = 0, 
hence from the vertical component of (4) we have d?/dy = 0. At 
the wall, we have chosen an upper region occupying a fraction of 
the wetted length, called the impact zone. Here the horizontal 
component of fluid velocity U changes from II = Ub = -U0 before 
impact, to U = 0 after impact. From (4) this gives the boundary 
condition d?/dx - -pl)0 where U0 > 0 is a constant. Also d?/dx = 0 
on the rest of the wall. Towards infinity P —> 0. Figure 3 
summarises the boundary value problem, and we can solve using 
Fourier analysis. A solution which satisfies the bed, 
free-surface and infinity boundary conditions is 

P = E an sin(A„y)e 
n=o 

^nX 
(6) 

where Xn  = (n+i) TT/II. 

The constants a„ are determined by the known values of d?/dx  at 
x = 0, the wall 

dP S - an/\n sin Any 

which give an 

= -p\J0   y: -fill < y < 0) 
= 0 y:  -II < y < fill) 

-2pU0    (l-cos/tAn) 
II /in 

and P(x,y) = ~M±   S    (l-c°^°) sin(Any)e-AnX_ IT 

(7) 

(8) 

Note that for points x > 0 (away from the wall) the series in (8) 
is rapidly convergent because of the exponential terms. At the 
wall (x = 0) the distribution of pressure impulse is as shown in 
figure 4, for several values of fi. 

Now from (2) we have 
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pPK = 2P/At  . 

The impact time, At, is difficult to model because it depends 
critically on the exact type of breaking at the wall, the air 
content of the fluid, and the inherent random qualities of impact 
under "fixed" wave conditions. Following experience from 
computations in Cooker and Peregrine 1990 it seems reasonable to 
take At « fill e.g. 2/jH/Ca where Ca is the sound speed in aerated 
water. The authors wish to make it clear that the above theory 
does not depend on any particular model or choice of At (so long 
as At is small, in the sense AtU0/L0 « 1). A designer may wish 
to use values of At gleaned from experience or which are related 
to the resonant frequency of the structure under wave attack. 

The peak pressure distribution corresponding to a simple 
model: At = i/iH/U0 is shown in figure 5. Small values of fi are 
of particular interest, and the curves bear a striking resemblance 
to the empirical diagrams reported in Partenscky (1988). Note 
that the pressure does not decay to zero at the bed and that for 
ft =  1 the maximum peak pressure lies at the bed. 

The impulse on the whole wall, Iw, is the integral of (8) with 
respect to y, at x = 0, over the wall. 

IW=2A s (l-cospA„) _ (9) 
IX   n = 0      A n 

See figure 6. In addition the impulse due to a finite triangular 
wave is shown. This result can also be found analytically. This 
comparison shows that the impulse is mainly due to the loss of 
momentum from fluid near the wall. We calculate the significant 
thickness of fluid Lm (momentum length) for the semi-infinite wave 
by equating Iw with the momentum of a rectangle of fluid of height 
/ill, speed U0, density p  and length Lm. Then 

T - 2  v (1-cos/iAn) /1(n 

Surprisingly Lm is at most 0.543H (when \i = 1). This explains why 
the triangle and the infinite rectangle in figure 6 give impulses 
which are the same order of magnitude. 

Last in this section of theoretical results we can use eq" (4) 
to predict the fluid velocity after impact, Ua.   This is most 

interesting to evaluate at the free surface. Suppose Vb = 0 (i.e. 
the top of the wave is in horizontal translation before impact) 
then taking the vertical component of (4) we have 
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Force    Lmpvlse/i^TJJi1). 

jx = fraction of wall in impact. 

Figure 6. The impulse, Iw, on the wall from equation (9). The 
impulse due to a triangular wave (see sketch) is also plotted 
for comparison. The two waves are very different in shape but 
exert the same order of magnitude of impulse on the wall. 
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Figure 7. The vertical velocity at the free surface immediately 
after impact, Va (with Vb = 0) from equation (11) Note these 
curves are proportional to surface elevation a small time 

- 2D after impact. The velocity near x = 0 resembles  ^n(x). 
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where z = x + iji. 

-1 d? 
p  Vy 

2U„    a   (i- 

3 f = 0                       OTT 

= —° in t 

(1-COS/iAn) „"AnX 
In      6 

cosechfz/2+coth?rz/2 
cosechjx/2+cotlux/2 

(11) 

At x = 0, Va is infinite, but the vertical flux of fluid between 
x = 0 and any station x = X is finite. Va is plotted for several 
values of \i in figure 7. Note that the surface elevation, i), some 
small time T after impact is given by ?/(x) = Va(x)-T, so that the 
curves in figure 7 show possible shapes of the free surface after 
impact when the incident wave has a flat top, as in figure 2. 

Comparison, with Experiment 

Figure 8 shows a comparison between the current theory and the 
peak pressure distributions for two small wave impacts, measured 
by Weggel and Maxwell (1970). Note that the pressure axis is 
dimensionless and that we are here comparing shapes of 
distribution of peak pressure. Our choice of [i accords with that 
chosen by the experimenters in their own mathematical model. 

Figure 9 compares theory with large-scale experiments 
(Partenscky and Tounsi, (1989): peak values from figure 5). Here 
we have chosen fi = 0.24, in agreement with the experimenters' 
choice for their comparison with theory. H = 2.45m, breaker 
height = 1.5m, so UD - 3.8 m/s. At = 0.015 (measured) which if 
At = 2/iH/Ca implies Ca = 230 m/s, (this corresponds to an air 
volume content of only 0.27.. 

These comparisons encourage belief that pressure impulse 
theory captures the essential fluid mechanics of wave impact. 

Conclusions 

The theory of fluid pressure impulse has been used to model 
wave impact on a vertical wall. The results give spatial 
distributions of peak pressure which agree well with measurements. 
The theory predicts that the impulse on the wall is similar for 
two widely differing geometries (semi-infinite rectangle and 45° 
triangle). This is because the momentum lost from a wave of any 
shape comes from a narrow zone close to the wall (whose width is 
the momentum length). An important advantage of this theory is 
that it can be applied to waves with arbitrary vorticity. Further 
work is in progress to calculate pressure impulses due to 
three-dimensional waves. 
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Figure 8. Comparison with experimental measurements of Weggel 
and Maxwell (1970), for two waves H = 0.242m and 
II = 0.214m. Note that the vertical scale is 
dimensionless and we have chosen \i = 0.32 in 
agreement with the experimenters' own numerical 
model. 
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Figure 9.   Comparison  with  experimental  measurements  of 
Partenscky and Tounsi (1989) (figure 5). H = 2.45m, 

U = VP = 4-9m/s and At = 0.005s. (The experimental 
data is the peak response at each recorder in the 
impact period). The theory with /j = 0.32 is shown 
(/* = 0.32 accords with the choice made by those 
authors for their numerical model). The present 
theory with /j, =  0.17 is also shown. 
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