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FORCES ON AND PARTICLE MOTIONS 
AROUND SUBMERGED STRUCTURES IN STEEP WAVES 

JESPER SKOURUP 1 and IVAR 6. JONSSON 2 

Abstract 

A boundary integral equation method combined with 
a non-linear time stepping procedure for the free water 
surface is developed for simulations of the interaction 
between highly non-linear water waves and fixed submerged 
horizontal cylinders. 

The wave forces on the cylinders are computed and 
a good correspondence is found with other computed re- 
sults for low Keulegan-Carpenter numbers. 

A new method for tracing the orbits of water par- 
ticles in the fluid domain is developed, and the influ- 
ence from submerged structures on the orbits is visual- 
ized through some computational examples. 

Introduction 

The numerical modelling of the interaction between 
highly non-linear water waves and large structures has 
been a field of growing interest during the last decade. 
These studies are motivated by the desire to obtain a nu- 
merical model in which simulations of wave/structure in- 
teractions can be performed, and hence establish an al- 
ternative to physical model tests. Among the numerical 
models based on a potential theory formulation the Bound- 
ary Integral Equation Method (BIEM) turns out to be one 
of the most efficient ones. 

The first contribution where the BIEM was used for 
the modelling of steep and overturning waves was given by 
Longuet-Higgins & Cokelet (1976) . They used a formulation 
based on Green's 2nd identity, but in a conformably map- 
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ped space, and the computations were thus restricted to 
two spatial dimensions (2-D). 

Use of a BIEM based on the Cauchy integral theorem 
was made by Brevig et al. (1981) , and they computed the 
wave forces on a submerged horizontal circular cylinder 
(pipeline) caused by breaking waves. 

Stansby and Slaouti (1984) also used a formulation 
based on the Cauchy integral theorem in their computa- 
tions of wave forces on a horizontal circular cylinder, 
and they obtained results which were in good agreement 
with the analytic results of Ogilvie (1963). 

An efficient method for the temporal updating of 
the free water surface was developed by Dold & Peregrine 
(1984). In this method the influence of the higher order 
derivatives along the free water surface was taken into 
account, and this permitted the use of large time-steps 
with a good accuracy, and the method became very effici- 
ent for the modelling of e.g. overturning waves. In their 
model a conformably mapped space and Cauchy's integral 
theorem were used, and hence their computations (as in 
the previous models) were restricted to 2-D problems. 

In the present paper a 2-D physical-space, non- 
linear BIEM is used for the modelling of steep water wa- 
ves and for wave-structure interactions, and contrary to 
the 2-D models described above, there are in principle no 
restrictions for this model to be extended to 3-D. 

A simple method (based on the BIEM) for a time- 
stepping of water particles within the fluid domain is 
developed and used for tracing particle orbits in time. 
Fixed structures are incorporated into the model, and the 
flow field around them are evaluated by use of the time- 
stepping of interior points. 

Furthermore the wave forces on the structures are 
computed, and the "shielding" and "blockage" effects are 
shown for the case of two parallel cylinders. 

Mathematical Formulation 

The irrotational flow of an incompressible fluid 
with a free surface is considered. Within the frame of 
potential theory the flow can be described by a velocity 
gotential <£(x,t), and the fluid velocity is then given by 
u = (u,w) = (0xr0z) = v0 where x = (x,z) is a position 
vector of an "observation point" and t is the time. By 
use of the mass conservation equation in the fluid domain 
n(t) (depicted in Fig. 1) we find that <j> satisfies the 
Laplace equation throughout the fluid domain, i.e. 

V20 =0. (1) 

The boundary conditions for <p on the free surface 
rf(t) are the kinematic condition 
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BT = <ft + »'V>? = u = V0, z = , (2) 

where r is a position vector of a water particle at the 
free surface, and the dynamic condition (Bernoulli's equ- 
ation) 

D0 
Dt gz + |v*l2-? z = v (3) 

(D0/Dt = 0  + |V0| is a particle following (Lagrang- 
ian) operator, and 0. is an abbreviation of 30/3t) . In 
(3), g is the acceleration due to gravity, p is the at- 
mospheric pressure, and p is the density of water (here 
taken as 103 kg/m3). 

MWL 

Fig. 1 Calculation domain and definition of boundaries. 
The x-axis is at the mean water level (MWL). 

On the stationary bottom TV (which is horizontal 
and impermeable) the boundary condition is 

<t>r z = -h (4) 

where n is the coordinate along the unit normal vector n 
pointing outwards from the fluid domain (and 0 is an 
abbreviation of 30/an). n 

When a structure is situated in the computational 
domain, the boundary condition on its surface r (t) is 

0 V0-n (5) 

where V is a function describing the velocity of tije 
body suriace in the direction of the unit normal vector n. 
In the case of a fixed structure V =0. 

Boundary conditions at tne lateral boundaries 
r .(t) and r (t) are needed for a closure of the bound- 
ary value problem for 0. By assuming space periodicity 
(but not necessarily time periodicity) and no net current 
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below wave trough level, periodicity conditions can be 
imposed on the vertical boundaries r  (t) and r ?(t) 

*n[rn(t)] "-*n[rr2<t>]'  *[rr2 ^>] " *[rrl<t>]  <6> 

for the same z-values at the two boundaries. The hori- 
zontal distance between r (t) and r (t) has to be an 
integer number of wave lengths. Periodicity conditions at 
the lateral boundaries were also used by Brevig et al. 
(1981) and by Stansby and Slaouti (1984) in their studies 
of wave/structure interaction by use of the BIEM. 

In order to solve the Laplace problem (1) with the 
fully non-linear boundary conditions we use an integral 
equation method based on Green's 2nd identity 

a(x)0(x,t) = J  0(?,t)6n(x,|) - G(x,?)0n(|,t) dr  (7) 

r(t) 

-+ 
where £ is the position vector of an "integration point" 
situated at the boundary r(t) .  _„ _> 

The kernel function G(x,£) is the free space 
Green's function which in two dimensions is: 

G(x,f) = ln|f-x| (8) 

_„ The factor a(x) depends on the boundary geometry 
(a^x) = 7T for_,.x at a smooth part of the boundary, and 
a(x) = 27T for x inside n(t)). 

The derivative of^G in the direction of the out- 
wards unit normal vector n is 

K~xl 
Following the solution of the Laplace problem for 

0 an updating in time of the computational domain and 
related boundary conditions to a subsequent time level 
must be performed. Using the Lagrangian approach devel- 
oped by Dold & Peregrine (1984),^truncated Taylor series 
in time for the position vector r of a free surface par- 
ticle and for the velocity potential 0 provide 

3 i 

k=l   "'   Dt' 
r(t+At) = 2(t) + S -^|j- 2_l£t]_ + 0[(At)^

+1]     (10) 

0(r(t+At),t+At) =0(r(t),t) 

+ J 1A|£ D
k0(?(t)ft) + oi-^tjn+1-, (11) 

k=l K-     DtK 



FORCES ON SUBMERGED STRUCTURES 1393 

where At is the time increment, and the Lagrangian (par- 
ticle following) operator D/Dt is defined in (2). 

The expansion coefficients in (10) and (11) are 
obtained by successive solutions of the Laplace equation 
for the velocity potential 0 and its time derivatives, 
where the solution of one Laplace problem provides the 
non-linear boundary conditions for the next. 

The solution of the Laplace problem for 0 by use 
of Green's 2nd identity (7) gives as result 0 and 0 at 
the whole boundary of the computational domain. Hence the 
gradient of the velocity potential can be evaluated, and 
thereby the first order expansion coefficients in (10) 
and (11) by use of the free surface boundary conditions 
(2) and (3). 

The boundary condition at the free surface for the 
Laplace problem involving the first order time derivative 
is obtained from the Eulerian form of the dynamic condi- 
tion at the free surface (cf. (3)). 

*t= - gz - ||V0|
2 - -±,        z = v (12) 

The conditions at the remaining part of the boun- 
dary are obtained by differentiating (4) , (5) , and (6) 
with respect to t. 

Just as the governing differential equation (1) 
and the integral equation (7) are valid for 0, these may 
also be written for time derivatives of any order of 0. 
Hence we have a mathematical problem formulated in the 
same geometry as before, but now with 0, and 0. as so- 
lution at the boundary of the computational domain. The 
numerical solution of the second (and of subsequent) Lap- 
lace problems is computationally very fast compared to 
the solution of the first Laplace problem since the ker- 
nel functions (G, G ) of the governing integral equation 
only are functions of the boundary geometry which is un- 
changed, since all derivatives are computed at the same 
time level. In the present work the series (10) and (11) 
are truncated after n=2, but it is mentioned that the 
expansion coefficients are obtained from the fully non- 
linear boundary conditions at the free surface. 

The lateral boundaries of the computational domain 
are updated by following the horizontal motion of the 
intersections with the free surface. 

After the solutions of the Laplace problems for 0 
and 0. have been found by use of the BIEM, all variables 
of interest at the boundary of the computational domain 
are determined. By use of (7) it is thus possible to de- 
termine the values of the velocity potential 0 and its 
time derivative <p. at any point inside the computational 
domain n(t). Furthermore, analytical differentiations of 
(7) provide integral equations to determine the values^of 

*x' *z' *xt' *zt' *xx and *xz at the observation point x. 
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These functions only appear as unknowns outside the rel- 
evant integrals (since G and its derivatives are func- 
tions of the geometry, which is known), and the numerical 
evaluation of them is therefore very fast. From the re- 
sults we may deduce the particle velocity components u 
and w, the acceleration components a and a , and the 
dynamic pressure p (= p + 4gz) at £he interior point 
given by the position vector x as: 

u(x)  = 0x(x) (13) 

w(x)  = 0z(x) (14) 

ax(*} = 0xt(*} + *xx(*),M*) + *xz(^*z^'       (15) 

az(x) = *zt(x) + 0xz(x)0x(x) - 0xx(x)0z(x)       (16) 

p+(x) = - ,[>t(x) + \  {(0x(x))
2 + (0z(x))

2}]      (17) 

-+ —• 

where in (16) 0  (x) has been replaced by -0  (x). 
A time-stepping method for water particles in the 

fluid domain fi(t) similar to the one for updating of par- 
ticles at the free water surface (i.e. based on truncated 
Taylor series) may then be written as: 

2 
xi(t+At) = xi(t) + u(x)At + ax(x) -^p— + 0[(At)

3] (18) 

Zi(t+At) = Zi(t) + w(x)At + az(x) -^|i- + 0[(At)
3] (19) 

—• 

where the position vector of the water particle is x = 
(x., z.)- Hence we have established a visualization tech- 
nique that enables us to follow the traces of water par- 
ticles in the fluid domain in time. 

Numerical Solution Method 

The boundary of the computational domain is sub- 
divided into a finite number of small segments, each seg- 
ment connecting two adjacent discretization points situ- 
ated at the boundary curve. By representing the geometry 
as well as the boundary functions 0 and 0 at each seg- 
ment by a prescribed variation, the governing integral 
equation can be formulated in terms of the values of the 
variables 0 and 0 (or 0. and 0, ) in the discretization 
points. Hence we may form a linear algebraic system of 
equations, in which each element only is a function of 
the geometry of the boundary and of the interpolation 
functions used. 

In order to model the variation of boundary func- 
tions between the discretization points, we use a Hermite 
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cubic spline representation along each boundary element 
at the free surface (i.e. between two adjacent discreti- 
zation points) and a linear variation elsewhere. By this 
method a continuity up to and including 2nd order deriva- 
tives of the free surface representation is kept, and all 
boundary nodes there are treated equally in the numerical 
solution of the governing integral equation. 

The numerical integration over each regular bound- 
ary element (i.e. an element where the integration point 
does not coincide with the observation point) is per- 
formed by use of a standard Gauss-Legendre quadrature. At 
the singular boundary elements special methods must be 
used (see Skourup (1989) for details). 

Results 

During recent years, particular attention has been 
paid to numerical simulations of the interaction between 
waves and submerged floating structures with large dimen- 
sions. Especially a new concept for crossing of deep 
fjords and straits with submerged tunnels (which e.g. has 
been proposed for a strait crossing at Hbgsfjord, Norway) 
has inspired to the work presented in this paper. 

In all the following computations the Keulegan- 
Carpenter number K is smaller than 2 and the predominant 
contribution to the force on the structure is thus iner- 
tial and can be computed by the BIEM.^ 

The total wave force vector F on the structure, 
which is cylindrical, is obtained by integrating the ex- 
cess pressure p (due to the waves) over the whole sur- 
face of the structure. 

F = - f  p+ n dr (20) 
Jrs 

-> 
where n is the outward normal unit vector from the sur- 
face of the cylinder. The excess pressure p  is deter- 
mined from the Bernoulli equation as 

P+ = - p[*t •+  |(0S
2+ 0n

2)] (21) 

where <p vanishes at the surface of the cylinder (since 
it is fixed and impermeable) . The term <f> is found from 
the spatial derivatives of 0 at r . 

One Circular Cylinder 

The special reference case with computation of the 
interaction between waves and a submerged horizontal cir- 
cular cylinder with its axis parallel to the wave crests 
has been treated widely in the literature, beginning with 
Dean (1948), who showed that linear deep water waves un- 
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dergo a phase shift as they pass over a cylinder, and 
further that there is no reflection from the cylinder. 
Ursell (1950) used a multipole method, and derived ex- 
pressions for the first-order forces on the cylinder. 
Ogilvie (1963) extended Ursell's method and provided ex- 
pressions for the mean second order ("drift") force at 
the cylinder. Chaplin (1984a,b) performed experiments to 
determine the non-linear forces and mass transport around 
a horizontal submerged cylinder, and experimentally ver- 
ified that there is a mass-transport around the cylinder, 
as it could be predicted by use of Milne-Thomson's (1968) 
circle theorem. 

A fluid domain with a horizontal dimension of one 
wave length L is considered. In this domain we situate a 
fixed horizontal circular cylinder with diameter D = 2a 
(a being the radius of the cylinder) and a submergence d 
of its centre axis as depicted in Fig. 2. 

Fig. Definition sketch of submergence d and radius a of 
horizontal circular cylinder. 

The diameter of the cylinder is D = 10.0 m and the 
submergence is d = 20.0 m. The wave data are: H = 10.0 m, 
T = 8.78 s, at a depth h = 100 m and an initial profile 
given by the stream function wave theory by Rienecker & 
Fenton (1981) . This gives a wave length L = 128 m and 
hence a steepness of the wave of 7.8%, and the Keulegan- 
Carpenter number K = 1.2. Computations are carried out 
covering 6 wave periods with time steps of T/100, and the 
resulting wave force variation in time on the cylinder is 
depicted in Fig. 3. The total force on the cylinder is 
computed as the modulus of the two force components F 
and F_. 
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150 

time/T 
0 12 3 4 5 6 

Fig. 3 Wave force on a horizontal cylinder during 6 wave 
periods. Domain length is L. 

By regarding Fig. 3 it is readily seen that the 
oscillations of the total force tend to decrease as the 
computations proceed in time. In order to investigate if 
this is an effect arising from using the periodicity con- 
ditions at the lateral boundaries with a distance of just 
one wave length, the same computation is carried out with 
identical wave and structure data, but now with the hori- 
zontal dimension of the computational domain of either 
three or five wave lengths (i.e. the spacing of the cyl- 
inders is either 3L or 5L). 

In Fig. 4 the total force on the cylinder is com- 
pared for the horizontal dimension of the computational 
domain being either one or three wave lengths. 
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Fig. 4 Total wave forces on a cylinder during 6 wave pe- 
riods. Domain length is either L or 3L. 

During the first three wave periods the differ- 
ence between the two results is less than 1.5% of the 
mean total force on the cylinder. The larger deviation 
hereafter is probably an effect of the proximity of other 
cylinders. Extending the horizontal dimension of the com- 
putational domain further to five wave lengths provides 
almost identical results as obtained from the domain, 
which was three wave lengths long, when the first three 
wave periods are considered. 

From these computational results we conclude that 
a horizontal dimension of one wave length is sufficient 
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for computations covering a time span less than three 
wave periods. It is mentioned that the computational time 
is proportional to N3 for large values of N (where N is 
the number of computational nodes at the boundary), and 
the desired accuracy of the results therefore must be 
assessed against the computational time necessary to pro- 
vide the results. 

Numerical results for the interaction between non- 
linear waves and a submerged horizontal, circular cylin- 
der at low Keulegan-Carpenter numbers, are found in Stan- 
sby & Slaouti (1984) , in Vada (1987) , and in Isaacson & 
Cheung (1990), and in all cases the inertia coefficients 
are in the same range as the present results. 

Experimental results are also available, and for 
deeply submerged cylinders Cheong et al. (1989) found the 
inertia coefficients to be in the vicinity of 2 for low 
Keulegan-Carpenter numbers. For a cylinder close to the 
free surface, Chaplin (1984b) and Miyata & Lee (1990) 
found the inertia coefficients to be much smaller than 2 
in their experiments with Keulegan-Carpenter numbers in 
the range 1-3. Chaplin (1984b) explained this decrease as 
associated with the circulation generated by steady stre- 
aming in the oscillatory boundary layer on the cylinder. 
It has not been possible in the present work to reproduce 
these low inertia coefficients. This indicates that the 
large reduction of the inertia coefficients is an effect 
due to viscosity, which is omitted in the present work. 
Miyata & Lee (1990) obtained this large decrease of the 
inertia coefficient in their computations where they sol- 
ved the Navier-Stokes equations in a finite difference 
formulation for Reynolds numbers 1.69-10  and 3.87-10 . 

Tracing of the orbits of water particles in the 
vicinity of the cylinder is performed by use of the time 
stepping method for particles in the fluid domain (i.e. 
eqs. (18) and (19)) . 

In Fig. 5 the particle motion during one (Euleri- 
an) wave period is followed. It is seen that the water 
particles tend to follow the cylinder contour and that 
they have all moved to new positions in the clockwise 
direction around the cylinder after one wave period. This 
circulation of water particles around a horizontal cyl- 
inder is also showed analytically by e.g. Ogilvie (1963) , 
and verified experimentally by Chaplin (1984a). The am- 
plitudes (both in the horizontal and the vertical direc- 
tions) are by linear wave theory found to be 2.77 m for a 
water particle at z = -12.0 m, and this corresponds quite 
well with the orbits shown in Fig. 5. 

Particle orbits in the vicinity of the cylinder 
are also computed using the circle theorem (cf. Milne- 
Thomson, 1968) combined with a time-stepping procedure 
(as (18) and (19)) for water particles and good agreement 
was found with orbits computed by the BIEM. 
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Z(m) 

X(m) 

Fig. 5 Traces of the particle motions during one period 
in the vicinity of a submerged, circular cylinder 
with diameter D = 10.0 m. Wave data: T = 8.78 s, 
H = 10.0 m, L = 128 m at h = 100 m. •: initial 
position, •: orbital direction. Domain length L. 

Two Circular Cylinders 

Computations with more than one cylinder in the 
fluid domain are also performed. 

Two parallel horizontal circular cylinders are 
considered, and the dimensions of the cylinders are kept 
the same as in the previous case, i.e. with a diameter 
D=10.0m, and a submergence of their centre lines at 
d=20.0m. The wave data are also the same as before. The 
length of the computational domain equals L. In order to 
investigate the shielding and blockage effects between 
the two cylinders, computations with different distances 
between the centre lines have been carried out covering 
three wave periods. The distances have been chosen as 
1.5D, 2D and 3D and the main results are given in Table 
I. Here also the reference-numbers corresponding to an 
"infinite" distance between the cylinders are given. 
These reference numbers are computed during the second 
and third wave period for the case with one cylinder in a 
domain with length 5L. 

From Table I two different effects from the in- 
teraction between the two cylinders appear. Regarding the 
horizontal force F on each of the two cylinders it is 
seen that the amplitudes are decreasing as the cylinders 
are approached to each other, and that the force ampli- 
tude is larger on the upstream cylinder than on the down- 
stream cylinder. This is due to a shielding effect be- 
tween the two cylinders. 
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Centre 

Cylinder 
axis 
dist. F 

x.max 
F 
x,mm F z ,max 

F 
z ,min F_ t ,max F„  . 

t,mm 

1 
(upstream) 

1.5D 
2D 
3D 

138.1 
139.9 
142.4 

-123.2 
-129.5 
-134.0 

160.3 
151.6 
145.4 

-142.9 
-134.1 
-128.4 

162.0 
154.5 
149.1 

116.4 
122.3 
122.8 

2 
(downstream 

1.5D 
) 2D 

3D 

126.1 
131.7 
134.4 

-122.7 
-125.6 
-130.4 

155.0 
145.0 
138.7 

-146.4 
-137.5 
-132.8 

155.6 
146.5 
141.3 

116.9 
119.9 
121.7 

"a>" 137.6 -134.2 142.9 -128.4 143.0 128.1 

Table I Extreme wave force amplitudes (in kN/m) at two parallel 
cylinders as function of centre axes distance. The com- 
putations cover 3 wave periods. 

Regarding the vertical force F on each of the two 
cylinders it is seen that the amplitudes are increasing 
as they are approached to each other. This result shows 
that there is a blockage effect between the two cylin- 
ders. The maximum force amplitude is slightly larger on 
the upstream cylinder than on the downstream cylinder. 

The sum of the shielding and the blockage effects 
between the two cylinders appear in the total force vari- 
ation at the two cylinders, and it is seen that the ef- 
fect from blockage influences the total force, since the 
maximum values of the total force on each of the two cyl- 
inders increase as the they are approached to each other. 

Z(m) _, 

X(m) 

Fig. 6 Particle orbits in the vicinity of two parallel 
horizontal circular cylinders with centre axis dis- 
tance 1.5D. Other data as in Fig. 5. 
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The shielding effect between the two cylinders is seen 
only to have a small influence on the maximum value of 
the total force on the two cylinders. 

Particle orbits in the vicinity of the cylinders 
are shown in Fig. 6 for a centre axis distance 1.5D. 

Conclusion 

It has been demonstrated that a fully non-linear 
boundary element model with periodicity conditions at the 
lateral boundaries of the computational domain provides 
good results for wave forces on and particle orbits 
around submerged horizontal cylindrical structures (2-D) 
for small Keulegan-Carpenter numbers. The effects from 
shielding and blockage between two cylinders are shown by 
computational examples, and the cylinder distances are 
found to have some effect on the forces. 

There are, in principle, no restrictions in the 
mathematical formulation that prevent the present model 
from being extended to 3-D. However, appropriate condi- 
tions at the lateral boundaries of the computational do- 
main must be developed in order to be able to perform 
computations with 3-D waves of not permanent form. Fur- 
thermore, faster and more efficient computers than those 
of today must be developed before an accurate non-linear 
3-D model can be developed and used for application as a 
"numerical wave tank". 

A more detailed account of the present study will 
be published subsequently (Skourup & Jonsson, 1990). 
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