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DYNAMIC STABILITY OF ARMOR UNITS - A BEM APPROACH 

Chimin Chian(l) and Franciscus Gerritsen(2) 

ABSTRACT 

A method is presented for predicting primary stability of armor units on a breakwater 
exposed to solitary waves. A 2-D flow model is developed based on a boundary element 
method for simulating run-up of a nonbreaking solitary wave on an impermeable, 
smooth slope. Since Laplace equation subject to exact boundary conditions is solved 
by the model, the 'mild slope' restriction in using a 1-D long wave model is eliminated. 
Schemes including inductive wave generation, Lagrangian shoreline motion and free 
surface regridding are proposed. The run-up flow model is then coupled with an armor 
stability model to predict a stability number for armor units as function of time and 
location on the slope. Aspects such as applicability of Morison-type approach and 
selection of lift coefficient are examined. Results of computed wave run-up and armor 
stability are compared with experimental data. 

l.INTRODUCTION 

A solitary wave, described as a disturbance of water surface that travels at a supercritical 
phase speed with a permanent and symmetrical form completely above the still water 
line, propagates from offshore region shoreward towards a coastal structure wich has a 
sloping seaward face. After the leading tip of the wave reaches the slope, the wave 
deforms, runs up to a maximum height, and then runs down before propagating seaward. 
In its passage, the wave generates an unsteady flow field which exerts hydrodynamic 
forces on the exposed part of the structure. The subject of this study is the primary 
stability of the protective layer of rocks, or armor units, on the sea-facing slope of the 
structure under such flow conditions. 

Kobayashi et al. (1986, 1987) studied the problem for oscillatory waves with a flow 
model based on a finite-difference method. A stability model was developed for armor 
units which predicted a stability number as a function of time and location on the slope 
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Since a one-dimensional long wave equation was used, their model is applicable only 
to mild slopes. When the slope is relatively steep, a two-dimensional model is desirable 
for adequate description of the flow condition along the sloping bed. For this purpose, 
an approach based on the boundary element method is deemed appropriate if we may 
assume the slope is, to a good approximation, smooth. 
Run-up of solitary waves on a smooth slope has been studied, among a few others by 
Kim et al. (1983) using a boundary element method. To broaden the range of problems 
being treated and to reflect the development in our study of nonlinear wave simulation, 
we present in this paper a model based on the potential theory and a boundary element 
method (BEM) for evaluating the stability of armor units exposed to solitary waves on 
relatively steep, impermeable, smooth slopes. 
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Fig.lDefinition sketch. 

2.PROCEDURE 

For a problem defined in Fig. 1 where potential theory is assumed valid, the appropriate 
governing equation and boundary conditions are 
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dropping the stars, and expressing the free surface boundary conditions in surface-fitting 
coordinates (Liu, 1978), we have 

V2<|) = 0 inn, (5) 

— = 0 on   solid bed, (6) 
dn 
a-n_   l   d§ 
dt     cos(33rc 

on   y = TI , (7) 

d*   lffaiY   (*$Y\ 
at    2\U«;     Us) / 7 (8) 

To specify the condition at the offshore (left) boundary, we differentiate between wave 
generation and run-up simulation. In wave generation, an inductive method is used 
(Chian, 1989) in wich the wave field is generated by gradually introducing a known-a- 
priori wave form into the computational domain with other variables being solved 
stepwise in the process until the entire wave (cut at 0.1 %H) is in the domain. For this 
procedure, the condition at the offshore boundary is 

Jn"~U' (9) 

where u is the horizontal fluid particle velocity. In the ensuing run-up simulation, the 
generated wave field is taken as the initial condition and the offshore boundary is set 
open by using an Orlanski condition given by 

Tt+CTn = °' <10> 

where c is the wave phase speed and overbars denote depth-averaged values, all being 
evaluated at each time step. The assumption underlying eq.(10) is that the shape of the 
outgoing wave keeps approximately unchanged. 
At the shoreline, we write the dynamic free-surface boundary condition (8) as 

d<!>= 1 
dt ~ 2 

a<M2  (d^z 

dn)     \ds 
on   y = r\. 

(11) 

Assuming that the fluid element at the shoreline consists of the same fluid particles at 
all times, eq.(ll) further reads 

d<|>    1   2 - = -us-r, on   y-n, (12) 

with Us, the velocity of the fluid element at the shoreline, being evaluated using the 
boundary solutions of velocity potential along the slope. To match this scheme, 
Lagrangian nodes are used on the slope to follow fluid motion. 
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Applying Green's second identity to the boundary value problem governed by the 
Laplace equation, it may be shown that 

Jr{ on on j 

Where t, , u>   are field and source points, F is the boundary enclosing Jl, £ is the 
interior angle of the boundary at 4 .and G is a fundamental solution of the form 
G(C  cJ t)=- ln(r ) ,with r  being the distance between •£ and tO. 

Discretizing eq.(13) by dividing T into iV linear elements, and differencing eqs. (7), 
(8), (10), (12) in time by a Crank-Nicholson implicit scheme, a set of simultaneous 
equations subject to boundary conditions may be obtained (Kim et al., 1983; Chian, 
1989) and solved in time domain for <f> and ^/^n aroundrDifferentiating solutions 
of § along the slope then yields a history of fluid particle velocities at various locations 
on the slope, which are used as input for the armor stability model as will be discussed 
later. 

In implementing run-up simulation, a regridding scheme is used on the free surface at 
each time step, with which the size of projections on x of all elements are kept equal so 
as to avoid excessive elongation or shortening of certain elements and improve the 
accuracy of numerical differentiation along the free surface in evaluating ^2 and P. 
The scheme is given by 

, —,—     =p,\ <b, -l-!    +t    d),—-,— (advancing   wave) 
dn ds)v    %XV   dn ds)t   

ZzV   dn dsji+l 

?$>  di>\       J    ?i>  dt>\      J    ad) ?i>\ 
-STU, —.— I +&\ <t>> —.— (receding   wave) 

'dn'osj:,       V   'dn'dsl,     2l   'dn'ds it i 

where 

^    if, dS-St/2} if      dS-St/2 
?1~2V St/2     )' ^    2{l        S,/2 

„ If d-S-Si-1/2\ .-.if,    dS-Si.1/2 
?1    2l S,-,/2     J' ?1    2^ St.,/2 

In the above, 5j and S/-i are the lengths of the i th and the (M)th elements. dS is the 
difference in element length between two time steps. Primes for the subscripts denote 
the interpolated nodal points. Linear interpolation is chosen in this scheme for consist- 
ency with the linear elements used in this study. 

To relate wave field with armor stability, Kobayashi et al. (1986) showed, based on 
analysis of forces acting on armor stones, that the commonly used stability number 
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could be dynamically represented by the one calculated from the threshold condition 
against sliding/rolling. Modified in this study, using the scaling relationships given 
previously, this number is given by 

Ns=A-2 tan*cosa-- -   B sina 

A-- 

\ub\\ 

r   dub 
B  

v.     dt 

B 
CM s = 

(14) 

C2(CD + Citan<J>)' s-l' y 

in wich ub is the fluid velocity tangential to the slope, CD,CM,CL are the drag, inertia 
and lift coefficients, respectively, and C2, C3, , , are, respectively, area and 
volume coefficients of the stone, frictional angle of the stone, specific gravity of the 
stone and that of the water. 

In this study, the same values for various coefficients in eq.(14) are adopted as in 
Kobayashi et al. (1986, 1987) except for Q, which is chosen to be 0.18. The value of 
0.4 as used for some cases by Kobayashi et al. (1986, 1987) is close to the solution of 
Milne-Thomson (1960) for low Keulegan-Carpenter number flow and minor effect of 
wall proximity. These premises are apparently at odds with the present problem. 

In coupling the BEM flow model with the stability model, special considerations are 
given to the fact that the Morison-type approach, on wich eq.(14) is based, may be 
considered valid only when the depth of the flow is sufficiently large compared with 
the sizes of the stones. Since it is observed that a thin-water sheet trailing the down-run- 
ning wave usually develops within a section near the shoreline, most obviously when 
the initial wave is relatively large, eq.(14) does not, and in fact should not be expected 
to, provide reasonable prediction of Ns. This difficulty is circumvented in this study by 
starting computing Ns from the location where the difference between the bed slope and 
the free surface slope becomes larger than 0.2, assuming this difference in slope 
increases montonically within a certain distance from the shoreline at all times. This 
procedure, however, is found not necessary for waves of heights smaller than about 0.2 
where no pronounced thin water sheet is observed. 

3.RESULTS 

Numerical experiments are run for solitary waves due to Boussinesq and Laitone on 
slopes steeper than 15°. The profile due to Boussinesq (1872) is given by 

^Hsech2lfM.Jix_ctX (15) 
where 

c=Vl+#. 

and the one due to Laitone (1960) is given by 
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where 

r[ = Hsechz[a(x-ct)]{ l-2//[l-sec/zza(x-cO]| 

c-l^-^0(«°). 

«-Vi'"-l"l*0(''"2>- 
For eq.(14), we use   s =2.71, C2 =0.9, Cj =0.66, CD =0.5, CM =1.5, and Cz=0.18. 

Fig.2 Sequences of free surface evolution during run-up (upper) and run-down (lower); H=0.2, =15$. 
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Fig.2 shows typical sequences of the evoluting free surface profiles during run-up and 
run-down of a wave of H=0.2 on a 15° slope. The deflected shape of the down-running 
wave with a thin tail near the shoreline when it approaches the still water line is clearly 
observed, which actually becomesmore pronounced for higher waves. 
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Fig.3 Maximum run-up of two different solitary waves on a 25° slope compared with experimental data by Hall 
and Watts (1953). 

Fig.3 presents the predicted maximum run-up on a 25° slope as compared with 
experimental data by Hall and Watts (1953). Fairly favorable agreement is achieved for 
both types of waves. The reflected wave formed after run-down is found to be around 
3/4 of the initial wave height. This reflected wave is observed to pass through the 
offshore open boundary with less than 3% increase in height and a phase speed agreeing 
well with the analytical value corresponding to its height. For waves higher than 0.38, 
backwash breaking is found to occur near the end of run-down, when fatal numerical 
instability occurs. 

Computed stability numbers are compared with the experimental results by Ahrens 
(1975) where oscillatory waves are used. The reason for using this work for comparison 
is that no experimental work for the solitary wave has ever been done in this subject 
area. To seek a common reference parameter for comparison, we use an equivalent 
Iribarren number given by 

tana 

(rj 
(17) 

where Le. is the equivalent wave length defined by the length of the wave truncated at 
T   =0.1% H on both ends. Figs.4 and 5 present computed Ns as a function of £ on 

1:2.5 and 1:3.5 slopes, respectively. The trends of stability variation over the concerned 
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range of surf conditions are predicted satisfactorily with locations of minimum stability 
found at 2.0<£<3.0 for cases tested. The value of minimum Ns, however, is somewhat 
underestimated in the case of 1:2.5 slope, which seems to be related to uncertainties in 
identifying regimes of applicability for a Morison-type approach in the present problem 
as mentioned earlier. For a particular wave, the minimum stability is always found to 
occur in the vicinity of the still water shoreline position during backwash. 
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Fig.4 Comparison of computed stability number with experimental data by Ahrens (1975) on a 1:2.5 slope. 
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Fig.5 Comparison of computed stability number with experimental data by Ahrens (1975) on a 1:3.5 slope. 
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4.CONCLUSIONS 

The stability of armor units on a breakwater slope exposed to solitary waves can be 
favorably modelled using the wave field predicted by the procedure of boundary element 
method as presented in this study. No 'mild slope' assumption is needed. 

The proposed schemes including inductive wave generation, Lagrangian shoreline 
condition and free surface regridding combined yield satisfactory results in run-up 
simulation. The Orlanski-type radiation condition also exhibits fair performance. 

The formulation of stability number based on the Morison equation does not yield 
realistic results unless the local water depth is sufficiently larger than the characteristic 
stone size. The simple empirical criterion used in this study to exclude the region where 
the Morison-type approach does not apply yields reasonable results. Further study is 
needed to better determine regimes of applicability of the Morison-type approach in the 
present problem. 
A reasonable range of lift coefficients of the armor stones should be close to the lower 
limit of the range used by Kobayashi et al. (1987), i.e. around 0.18. 
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