
CHAPTER 90 

Long Wave Interaction with Steeply Sloping Structures 

Stephan T. Grilli 1 and lb A. Svendsen 2, M. ASCE 

Abstract : A fully nonlinear model for free surface potential flows is used to analyze 
the transformation of solitary waves above a mild slope, from intermediate to shallow 
water (shoaling, overturning), and to study the interaction of these waves with coastal 
structures located in the shallow area. Computations include wave runup, overturning 
and reflection form steep slopes or vertical wall, and from a combination of a slope 
and a submerged breakwater. Results are compared with other numerical, analytical 
and experimental results. Effects of the submerged breakwater, of making horizontal 
velocities more uniform over depth and of reducing wave runup on the slope, are further 
detailed. 

Introduction 

In this paper, the Boundary Element Model (BEM) for fully nonlinear waves 
developed by Grilli, et al. 1989, is used to analyze the runup and reflection of 
solitary waves from steep plane slopes and their transformation over a combina- 
tion of a mild slope and coastal structures (submerged breakwater in front of a 
steep slope). The model solves two-dimensional free surface flows, in cases where 
potential flow is a good approximation. Under such conditions, Green's iden- 
tity makes it possible to transform Laplace's equation into a Boundary Integral 
Equation (BIE). Instantaneous solution to this equation is then updated in time 
using the fully nonlinear kinematic and dynamic boundary conditions at the free 
surface. Along solid boundaries, no-flow conditions or conditions for generating 
or radiating waves can be imposed as well. 

This approach to nonlinear wave flows has been very successful over the 
last decade. Particularly noteworthy for important steps in its development are 
contributions by Longuet-Higgins & Cokelet 1976, Vinje & Brevig 1981 and Dold 
& Peregrine 1986. Most of the applications so far, however, solved the problem in 
a transformed space or used complex variable formulations, and introduced the 
assumption that waves are periodic in space. 
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In our model, the equations are solved directly in the physical space 
(i.e., without any mapping). This yields a method which is capable of directly 
adapting to almost any geometry of the boundaries and to periodic as well as 
non-periodic wave conditions. The BIE is solved using a higher-order Boundary 
Element Method (first introduced by Brebbia 1978), and the time integration is 
explicit and of second-order accuracy in time, based on the method of Dold & 
Peregrine 1986. In the model, wave generation can be done by a wavemaker, by 
internal sources, or by imposing the potential on the free surface (see Grilli & 
Svendsen 1989b, 1990). In the present paper, only the numerical wavemaker is 
presented and used to generate solitary waves. 

Figure 1: Sketch of the region used in the numerical computations. Definition 
of geometrical parameters. 

Mathematical formulation 

Governing equations.- We consider an inviscid irrotational 2-D flow described 
by a velocity potential (j>(x,t), and the velocity field is given by u = V</> = (u,w). 
Thus, the continuity equation in the fluid domain Q,(t) with the boundary V(t) 
becomes a Laplace equation for <j> (Figure 1), 

V2<£ = 0 in n(t) 

Using the free space Green's function G(x,X/) = 
the Boundary Integral Equation (BIE), 

: log | x - x, 

a(x,Mx,)= /     [—(x)G(x,x, (x)^V(x) 

(1) 

(1) becomes 

(2) 

where x = (x, z) and X; = (xi, zi) are position vectors for points on the boundary, 
n is the unit outward normal vector, and «(x;) is a geometric coefficient. 

On the free surface F/(i), <j> satisfies the kinematic and dynamic bound- 
ary conditions, 

—- = (— + u • V)r = u 
Dt      ydt ' 

V</> on Tt{t) (3) 
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^ = -az+\m?-?^ onr/W (4) 

with r, the position vector of a free surface fluid particle, g the acceleration due 
to gravity, z the vertical coordinate (positive upwards and z = 0 at the undis- 
turbed free surface), pa the pressure at the surface, p0 a reference pressure (e.g. 
at infinity) and p the fluid density. 

General boundary conditions.— In the present applications waves are gen- 
erated by simulating a plane wavemaker motion on the boundary Trl(<). In this 
case, the motion and normal velocity are specified over the paddle by, 

V^-n = -^ = up(xp(i),i)-n onrrl(<) (5) 

where the overline denotes a specified value, and (xp, up) are prescribed wave- 
maker motion and velocity respectively. Along the stationary bottom F;, and the 
tank extremity Tr2 representing a fixed structure (not necessarily vertical as in 
Figure 1), we have, 

V<f> • n = -^ = 0 on T6 and rr2 (6) 
on 

Time stepping method.— The time stepping, described in detail in Grilli, et 
al. 1989, follows the Eulerian -Lagrangian approach used by Dold & Peregrine 
1986. It consists of integrating the two nonlinear free surface conditions (3) and 
(4) at time t, to establish both the new position of the free surface Tf(t) and 
the relevant boundary conditions of Laplace's problems at the next time step 
t + At. It uses Taylor expansions in terms of the Lagrangian time derivative 
(as defined in (3)) and the small time increment At, for both the position r(<) 
and the potential <f>(t) on the free surface, which corresponds to following in time 
the pathline of a fluid particle, identical to a node of the discretization used for 
solving the BIE (2). We have so far limited the series to second order in At, 
which requires solving two Laplace problems at each time step (for <j> and -£), to 
get the coefficients in the series. 

After solving a first Laplace problem for {4>, gj£) at time t, boundary 

conditions of a second problem for (||, gjg^) are determined. Along the free 
surface, Bernoulli's equation yields, 

— = -gz- -| V<t>Y — onYjit) (7) 

and along the fixed boundaries, we get, 

d24> 
0 on Fj and Tr2 (8) 

dtdn 

For a plane wavemaker, we have 
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a^'J(Vn)-n,V(u,n)] onrrt(t) (9) 
dtdn dt 

Boundary conditions for a plane wavemaker.— Development of (9) for a 
rigid body motion, with translation a and rotation 9 yields (Cointe 1989), 

d24>        ...      .      ,;,, .      -       dd>,        d2d> ,.      .      d2d>, .       , .„„. 9  = (a. n) + 0[(a-s)--£]--£-f-(a • s) + ^(a • n) (10) 
dtdn ds       dnds ds 

where the dots denote time derivatives (^) following the body motion. 
A piston wavemaker represents a fiat vertical plate moving with hori- 

zontal displacement xp(t) and velocity up(xp(t),t) = xp(t). Hence from (5),(10), 
the boundary conditions read after some calculations, 

UP~HT °n lrl(t) (11) 8n~      p' 8tdn~      p       vds2 

A Flap wavemaker corresponds to a flat plate, hinged at the bottom 
at xg = (0,—d) and rotating an angle 6(t) £ [f,0] (negative clockwise). We 
define xp(t) and up(xp(t), t) = xp(t), the flap horizontal displacement and velocity 
respectively at the undisturbed free surface z = 0. Hence, from (5),(10), the 
boundary conditions read after some calculations, 

on dtdn        * ds2       ds 

9=-Rup,        9 =-R[up-2u2
p^},        rg = R^/d2 + x2

p[a-j + p+d}(l2) 

where R = d/(d2 + x2), and {a,j3) represent points along the flap. 

Numerical implementation 

The BIE (2), equivalent to the Laplace's problems (1) for <j> and the equivalent 
BIE problem for ^ , is solved by a Boundary Element Method (BEM, Brebbia 
1978) using a set of collocation nodes on the boundary and higher-order elements 
to interpolate between the collocation nodes. Quasi-spline elements (Longuet- 
Higgins & Cokelet 1976) are used on the free surface, and isoparametric elements 
elsewhere (linear to quartic). 

Each integral in (2) is transformed into a sum of integrals over each 
boundary element. Non-singular integrals are calculated by standard Gauss 
quadrature rules. A kernel transformation is applied to the weakly singular in- 
tegrals, which are then integrated by a numerical quadrature exact for the loga- 
rithmic singularity. An adaptive numerical integration is used for improving the 
accuracy of the regular integrations near corners (A-D, Fig. 1) and other places, 
like the overturning jet in breakers (as, e.g., in Fig. 8c,d), where elements on 
different parts of the boundary get close to each other. 
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Details of the numerical implementation can be found in Grilli, et al. 
1989,1989b,1990, along with a discussion of problems associated with surface 
piercing bodies, such as wavemakers. 

Generation of a solitary wave 

By a piston wavemaker.—In the following, primes denote dimensionless vari- 
ables : lengths are non-dimensio- nalized by d, times by J-, velocities by \/gd 
and accelerations by g. 

For a wave of permanent form, Goring 1978 determined to the first- 
order, the motion required by a piston wavemaker to generate a specified water 
surface elevation r\ immediately in front of the wavemaker (see Grilli & Svendsen 
1989a, for detail) as, 

{t)= r^hiLdT (13) 
Jo d + T){X,T) 

A first-order solitary wave profile of amplitude H' in water of constant depth 
d' = 1 is given by, 

ri'(x', t') = H'sech2[K{x' - c't')} (14) 

where K = :^j^- and the celerity c' = \/l + H1. Substituting (14) into (13) with 
x' = x'p(r') required throughout the integration gives the piston motion. The 
profile (14), however, is truncated at a distance x' — A' from the origin, before 
it is used in the computations. Setting x' = x'p + A' in (14) and integrating (13) 
we get x'p(t') and, by derivation, up(t') and u'v{t') (see Grilli & Svendsen 1990, 
for the complete expressions), which, introduced into (11), define the boundary 
conditions at the wavemaker. 

Solitary waves of small amplitude (H' < 0.2) are well generated by this 
method. For such waves, the first-order profile (14) is indeed quite close to the 
exact solution. For steep waves (H' > 0.2), however, due to nonlinear effects, 
solitary waves generated by the piston adjust their shape as they propagate, and 
shed a tail of oscillation behind them (Grilli & Svendsen 1989a). In fact, this was 
already observed by Goring 1978, in his experiments. 

Numerically exact solitary waves.—Solitary waves which are as close to be- 
ing exact as the discretization allows -"numerically exact waves"- are also used in 
the computations. They are computed using the method developped by Tanaka 
1986, and established as initial condition in the constant depth part of the com- 
putational domain. 

Reflection from a vertical wall 

Reflection of solitary waves from a vertical wall has been used to validate the 
numerical model, and to compare results with other numerical, analytical or ex- 
perimental results. In this application, numerically exact solitary waves have also 
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been used along with the approximate waves generated by the piston wavemaker. 

Runup.—In Figure 2, maximum runup values B* obtained with the BEM model 
for the exact and the approximate (lst-order) waves, are compared with a finite 
difference solution of Euler equations by Chan & Street 1970 (CH&S), a higher- 
order Fourier solution by Fenton & Rienecker 1982 (F&R), experimental results 
by Camfield & Street 1969 (CA&S), and a 3rd-order analytical solution by Su & 
Mirie 1980 (S&M). One sees that, up till about ^=0.45, all theoretical methods 
predict similar runups. Above that value, the 3rd-order theory predicts smaller 
runups, implying that contributions of order higher than third are becoming im- 
portant. For high waves, F&R's solution coincides closely with our results for the 
exact waves, and CH&S's solution agrees well with those of our lst-order waves. 
This is likely due to the approximate way CH&S generated their initial waves, 
which makes them qualitatively closer to waves generated by a wavemaker. Fi- 
nally, CA&S's experiments agree well with the higher-order results. 

Pressure force.—Once the BEM solution for the wave motion has been com- 
puted, essentially all details of the flow pattern are known, including pressures. 
We can therefore also calculate the forces and moments exerted on the structure. 
We found that maximum forces and moments predicted by the BEM closely cor- 
respond to F&R and S&M results, up till ^=0.5. For higher waves, a somewhat 
surprising result of the BEM is a double maximum found in the time variation of 
the force and moment (Figure 3). 

Reflected wave.—A detailed analysis of the reflected waves shows that an os- 
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Figure 3: Development in time of total dimensionless pressure force Fx on a 
vertical wall during reflection of an exact solitary wave. ^ : (a) 0.2, (b) 0.3, (c) 
0.4, (d) 0.5, (e) 0.55, (f) 0.6. 

dilatory tail is created by the reflection process, along with negative rundown 
values on the wall (of about 10% ^ for ^-=0.5). Energy is transmitted from the 
main leading wave to the tail, which results in a slight decrease in wave amplitude 
after reflection (of about 10% *j for ^-=0.5). These observations tie well in with 
the 5th-order analytical results by Byatt-Smith 1988. Right after reflection, the 
reflected wave is also found slightly faster than the incident wave, even though 
it is smaller (by about 0.5% for ^=0.5). This is due to highly transient changes 
in shape, energy partition and celerity of the wave, which take place over large 
propagation distances. 

Reflection from a steep slope 

Reflection from steep slopes (45° and 70°) has been examined for solitary waves 
generated by a piston wavemaker, the same way as in the laboratory experiments 
by Losada, et al. 1986 (LVN). Comparison with the measurements shows that 
phenomena such as generation, propagation and runup on a steep slope of large 
amplitude waves can be accurately predicted by our model. Even small scale 
oscillations in the experiments (like the oscillatory tail after reflection) are repro- 
duced quite accurately. An example is given below. 

Runup and rundown.—Reflection is computed on both the 45° and 70° slopes 
for waves of ^~ 0.26,0.45. Results show maximum runup values ^ are in 
good agreement with LVN's experiments (within 2.5% for 6 = 45° and 2.0% for 
9 = 70°). The agreement for the rundown figures ^ is somewhat less good but it 
should be noted that LVN found this quantity quite difficult to measure. Details 



LONG WAVE INTERACTION 1207 

Figure 4:  Comparison between computations ( ) and measurements ( ) by 
Losada, et al. 1986 for reflection from a 45° slope of a solitary wave of y= 0.269. 
The symbols mark data points and the dotted curve is a spline fit to these points, 
(a) Instant of maximum runup, (b) 0.44 time unit before rundown, (c) Instant 
of lowest position of water surface, (d) Back of the reflected wave. 

can be found in Grilli & Svendsen 1989a. 

Free surface elevation.—Figure 4 shows results for the reflection of a wave 
of ^=0.269 from a 45° slope. The computations are compared with the surface 
profiles measured by LVN at three different times, of which the first available is 
the instant of maximum runup (curves a) used for synchronization. In general, 
the agreement is considered good. Results, however, do not quite coincide at 
the time of rundown (curve c). The agreement is somewhat better with a profile 
computed at a time slightly before the instant of rundown (curve b). This shows 
that, as pointed out by LVN, both rundown and instant of rundown are quite 
difficult to measure since the surface motion along the slope is important over a 
very short time (the whole rundown process only lasts a small fraction of a second 
in the experiments). 

Internal velocities.—Motivated by the accuracy of the computations the method 
has also been used to analyze flow properties such as velocity and pressure fields 
that have not been measured during the experiments. Water particle velocities 
have been computed above 30° and 45° slopes, during runup-rundown of a wave 
of -^=0.46. Figure 5 shows quite complex flows above a 30° slope, with jet-like 
details (Fig. 5a,b) and a stagnation point (Fig. 5b) climbing up the slope during 
runup. It is found, the flow is never completely at rest at any moment of the wave 
reflection (even at the instant of runup in Fig. 5c). Finally, Figure 5d shows the 
initiation of breaking during the rundown process (backwash), at the rearside of 
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gd 

Figure 5: The internal velocity field during runup of a first-order solitary wave 
with f = 0.46 on a 30° slope, at time f - t'a = (a) : 0, (b) : 0.40, (c) : 0.95 
(maximum runup), (d) : 1.90. 
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and in the direction oposite to the propagation of the reflected wave. 
Detailed analysis of the results (Svendsen & Grilli 1990) shows that, 

for both slopes, horizontal velocities are significantly non-uniform over the depth 
(with variations of 25-35%) and that, accordingly, important non-hydrostatic 
pressures are generated (up to 80% on a 45° slope and 180 % on a 30° slope). 
This invalidates the assumptions underlying the Nonlinear Shallow Water equa- 
tions and makes their use questionable in these situations. The maximum runup, 
however, is found to compare reasonably well with the analytical results obtained 
by, e.g., Synolakis (1987) using those approximate equations. 

Figure 6: Sketch of composite domain : The shoaling zone is defined for x' < 84, 
and the shallow zone for x' > 84. Solitary waves are generated by a piston 
wavemaker at the leftward boundary. 

Shoaling and reflection over a complex geometry 

Solitary waves are propagated from deep to shallow water, in a domain with the 
bottom configuration of Figure 6. Waves of ^ = 0.05 to 0.2 are generated by 
a piston wavemaker, at the left hand boundary, in water of depth hi = 5, and 
are propagated over a mild 1:20 slope towards a region of depth hi = 1. At the 
extremity of this region, there is a combination of a submerged breakwater and a 
20° slope. The length of the domain is 100fe2, and the regions with x' = — < 84 
(the end of the mild slope), or > 84 are named the shoaling and the shallow 
zones, respectively. 

Shoaling zone.—Shoaling of waves of ^-=0.05,0.10,0.15 and 0.2 has been com- 

puted. In a logarithmic scale, results in Figure 7 show that, for — log (y) < 0.45 
(i.e., x' ~ 60), the rate of shoaling is close to, but not quite, the one predicted 
by Green's law. The average slope of the 4 curves in Figure 7 actually is closer 
to 1:5 in this region. During shoaling, incident waves reflect on the 1:20 slope. 
Due to the finite length of the computational domain, however, reflected waves 
propagating backward in the domain also reflect on the wavemaker. This leads 
to a slight increase in water level in the shoaling zone. Since smaller solitary 
waves are longer, the relative increase in level is somewhat more pronounced for 
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Figure 7: Maximum wave amplitude ^ff^ in shoaling zone, as a function of relative 

depth A for ^. : ( ) 0.05, (- - -) 0.10, (-.-.)  0.15, (— -) 0.20. The straight 

line represents theoretical Green's law : 2|p- oc (•£•)'* 

the smallest waves. This is illustrated by the vertical shifts between the curves 
in Figure 7. 

Further up the slope, for — log(^-) > 0.45 (i.e., x > 60), the rate of 
shoaling of the two smallest waves reduces, whereas the two largest waves shoal 
up even more and at an increasing rate. This is likely because the smallest waves, 
being longer, start earlier feeling the influence of the shallow water zone (h = h2). 

Shallow zone.—Figure 8c and d show that the largest waves of initial height 
|k =0.15 and 0.20 continue shoaling in the shallow zone, even though it is of 
constant depth. Their profile becomes more and more asymmetric, and their 
amplitude peaks up to ^^ ~ 1.4 and 1.6. They eventually become plung- 
ing breakers, somewhat before reaching the submerged breakwater. Hence, this 
shows, highly transient waves can reach breaking heights of more than twice the 
classical 0.78 times the local depth. 

The two smallest waves of Si = 0.05 and 0.1 (Figure 8a and b) shoal up 
to rhj^- ~ 0.55 and 0.80 (at x' ~ 95), respectively, propagate over the submerged 

breakwater and run on the slope up to heights of y"- ~ 0.90 and 1.5 respectively. 
Even higher relative heights of ^r431 = 1.26 and 1.66 respectively, are locally 
reached above the submerged breakwater. 

Figure 8b also shows the wave of ^J- = 0.1, eventually, is similar to 
a collapsing breaker. Computations of internal velocities above the slope, for a 
time slightly before the collapsing, show that velocities are close to being uniform 
over the depth. This is unlike the results obtained (e.g., in Fig. 5) for wave 
runup on steep slopes without a submerged breakwater at their toe, where the 
non-uniformity of the horizontal velocity was as high as 35%.   Computations 
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Figure 8:  Free surface elevation ^ in the shallow zone for j1 :  (a) 0.05, (b) 
0.10, (c) 0.15, (d) 0.20. Profiles are plotted each 10 (varying) time steps. 
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made in the same domain, for the same wave as in Figure 8b, but without the 
submerged breakwater, give a maximum runup of more than twice the previous 
result (j* = 3.16). This shows, the submerged breakwater has the effect, not only 
of making velocities more uniform (i.e., decreasing the maximum velocity), but 
also of reducing wave runup. Both these effects mean reduction of wave action 
on the steep slope. 

Figure 9: Envelope of maximum surface elevation !hj^ in the shallow zone : 

curves represent, from down to up, &• : 0.05, 0.10, 0.105, 0.110, 0.115, 0.120, 
0.125, 0.15, 0.20. 

In order further to analyze the transition between situation (b) and 
(c) in Figure 8, computations have also been made for intermediate wave heights 
of fjL = 0.105, 0.110, 0.115, 0.120 and 0.125. Figure 9 shows envelopes of the 
water elevations ^p^ obtained for these waves, as well as for the waves used in 

h2 

Figure 8. When wave height is slightly increased above j1- = 0.1, results show, 
the breaking type changes from collapsing to surging and plunging. At the same 
time, the breaking point (i.e., the abscissa of the maximum amplitude of the last 
computed profile) moves slightly backward on the slope and the breaking height 
becomes slightly larger. For all waves, there is a trough in the envelope, slightly 
downstream of the submerged breakwater, corresponding to where velocities are 
becoming more uniform. Further downstream, about at the toe of the slope, wave 
height is building up again. This process corresponds to the transformation of 
kinetic energy into potential energy and seems to occur, here, at a faster rate than 
in the situation without the submerged breakwater. Hence, wave height builds 
up more and over a larger area above the slope, and runup values are reduced. 
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