
CHAPTER 76 

INCORPORATION OF WAVE EFFECTS IN A 3D HYDROSTATIC MEAN CURRENT MODEL 

H.J. de Vriend^and N. Kitou2^ 

Abstract 

The consistency of the mathematical formulation of a 3D hydro- 
static current model for coastal areas is discussed. At various 
points, widely accepted concepts and formulations are shown to lead 
to inconsistencies, and more consistent alternatives are proposed. 
Besides, some essential lacunae in our physical knowledge of 3D 
wave-driven currents are indicated. 

Introduction 

Nearshore currents have a three-dimensional structure, which 
plays an important part in coastal dynamics. Mathematical models in 
this field ought to take this into account. 
Especially if the wave-induced "cross-shore" sediment transport is 
concerned, descriptions of the near-bed current velocity based on a 
2D depth-integrated current model will fail (cf. De Vriend, 1986). 
Also 2D-vertical models will fail in many practical cases, by lack 
of longshore uniformity. 
Quasi-3D models, coupling a ID-vertical and a 2D depth-integrated 
model to describe a 3D current field, may bring relief here. This 
type of models, however, needs further substantiation before being 
ready to describe nearshore currents (Arcilla et al., 1990; Svendsen 
and Putrevu, 1990). 
Fully 3D current models, therefore, have their part to play here, if 
it were only as a reference for simpler models (e.g. Q3D). 

The present paper describes the incorporation of wave-effects 
into a 3D-hydrostatic mean current model. It concerns the form and 
the consistency of the basic mathematical formulation, rather than 
the actual numerical implementation. 

Model concept 

We will start from a 3D hydrostatic current model, with the ver- 
tical plane mapped onto a rectangle via the so-called sigma-trans- 
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formation. It is essential for the concept presented herein, that 
the vertical is discretized into a fixed number of steps (layers), 
the uppermost of which covers at least the full height of the sea 
waves (Fig. 1). 
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Fig. 1  Discretization of    Fig. 
the vertical plane 

Derivation of semi-discretized 
wave-averaged equations 

The net wave effects are included in the constituting equations 
for the mean current by formal integration of the Reynolds equations 
over the vertical elements of the computational grid and over the 
time scale of the waves (Fig. 2). 

The resulting semi-discretized equations contain a number of 
wave residual terms, viz. 
- mass flux terms in the equation of continuity, 

mass flux terms in the momentum equations, and 
- wave-induced effective stresses in the momentum equations. 

Besides, the waves influence the turbulent exchange of momentum 
and the effective bottom shear stress. 

In the next sections, we will discuss these effects one by one, sup- 
posing the wave parameters to be given, i.e. we will not go into the 
matter of fully interactive wave-current systems. 

Wave-induced mass flux 

In the case of periodic waves, the wave-averaged equation of 
continuity contains no net wave-effects in layers entirely below the 
wave trough level, i.e. in all layers but the one adjacent to the 
water surface. 

The wave-averaged equation for this top layer reads 

3A     9 M. 
•sr5 + -^r-  [u. , i, + —) + T.T. = 0 at   ax. l i,k k p ' (1) 

in which: 
t   = t ime, 
X.   = horizontal co-ordinates (i-1,2), 
A   = thickness of the k-th layer, 
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horizontal    mean    velocity components,   averaged  over the  k-th 
layer, 
wave-induced mass flux components, 

p~  = mass density of the fuid, 
T.T. - terms related to the sigma-transformation. 

M. 
1 

The wave-induced mass flux components in this equation are defi- 
ned by 

t+T 

M. = 4     dt       p u.   dz l   T   J     J       i,n 
(2) 

n-1 

in which T denotes a significant time scale of the wave motion, long 
enough to yield a meaningful average, u. is the wave orbital velo- 
city in the top layer, and n is the index of this layer. 

On the basis of a wave theory, Eq. (2) can be elaborated in 
terms of wave field parameters (height, direction, etcetera). We 
will discuss this in a later section. 

At the physical level, Eq. (2) means an extension with respect 
to 2D-vertical and 2D-horizontal situations: the mass flux can give 
rise to 3D circulations, as is illustrated in Fig. 3. 

2DV 

2DH ( if existent! ) 

IU 

Figure 3  3D effect of wave-induced mass flux 
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Wave-induced momentum flux 

The procedure outlined in Figure 2, when applied to the momentum 
equations, yields residual wave-effects through the non-linear ad- 
vection terms. Using 

t+T z, 
Iff M' 
£       Mt u.   ,u.   ,    dz  - U.U.A.    + U.  — + 
T      J J i,kj,k I j   k I  p 

1 zk-l 

M.   . fc;T    z
k 

U.   — +  i dt u.   . u.   ,    dz 
J   P T       J J i,k j,k (3) 

*-,*• j ,«-. 

Vl 
we  can split the residuals of the horizontal advection terms into a 
mean-flow part, a mass-flux related part (two terms),  and a part 
that contributes to the radiation stress. 
The vertical advection term also yields a wave-residue, which should 
not be disregarded a priori (also see Svendsen and Lorenz, 1989, and 
Deigaard and Freds^e, 1989). 
The resulting semi-discretized equation for the k-th layer reads 

it K.^k+ h + [uiw^ , • k-l 

3z   ,  . z. 
,   S ,  1   9  r . i  ,   1,Z 

gAk 3X7 +  p   3x7 K 'ij.kJ +~^~ 

z
k 
z   + (4) zk-l 

+ I -.3 r. -   i  .-.  -v I k 
. 3X. CAk5iJ,k) "^i^l'L 

+T-T" 
in which: 
W   = mean vertical velocity component, 

g   = acceleration due to gravity, 

z   " water surface level, s 
•c..  = Reynolds stress components in vertical planes, 

z.       =  Reynolds stress components in horizontal planes, _i, z 
a..  = wave-induced effective stress, 

u.,w = wave-orbital velocity components, 

T.T. = terms due to the co-ordinate transformation. 

The mass flux component, non-zero in the top layer only, is  defined 
by (2). The definition of the wave-induced effective stress reads 

t+T  Zk t+T  zk 

5ij,k-M^I   p ai.k5j,k 
dz 'r1 |frI   <p-p<*2»dz   (5) 

t    zk-i *    vi 
in which p denotes the instantaneous hydrostatic part of the pres- 
sure and $.. is the Kronecker delta. 
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In general, the wave-induced mass flux will be small as compared 
with the mass flux related to the mean flow. If not, the mean flow 
velocity will be so small, that the advection terms are negligible, 
anyway. We will therefore disregard the mass-flux related residual 
advection terms. 

The remaining residue of wave-induced horizontal advection ba- 
sically acts as an effective stress, comparable to the Reynolds 
stress. In depth-integrated models, it adds up to the radiation 
stress (Longuet-Higgins and Stewart, 1964); in the present 3D model, 
this stress is distributed over the vertical. Consequently, the 
wave-induced current forcing, composed of the divergence of the ef- 
fective stress and the vertical advection residue, also has a verti- 
cal distribution. 

In addition to the wave-induced terms in (4), which vanish in 
the absence of waves, there are also wave-influenced terms, which 
are just modified by wave effects. The shear stress terms are of 
this type, and so are the near-bed boundary conditions. 

In the next sections, we will discuss how the mass flux, the 
effective stress and the wave-induced current forcing can be elabo- 
rated in terms of global wave field properties, such as energy den- 
sity, energy dissipation rate, etcetera. The other wave-influenced 
terms will receive further attention in a later section. 

Evaluation for harmonic waves 

Wave-induced mass flux 
Using linear wave theory, Eq. (2) for the wave-induced mass flux 

can easily be elaborated to 

u   E w ,,,, M. = — e. (6) 
l  c  l v 

in which E is the energy density of the wave field, c is the wave 
celerity, and e. denotes the components of the unit vector in the 
direction of wave propagation. 

Wave-induced forcing ("classical" approach) 
In depth-integrated models, it is customary to evaluate the ra- 

diation stresses on the basis of linear wave theory for a quasi-uni- 
form domain (mild-slope approximation). 
When applied to the present vertically resolved model, this theory 
yields for the effective stresses 

5ij,k- (N " f) E VV + KnE (?) 
<u. , w> = 0 

i,k 

in which N is the ratio of group and phase celerity, and f.. is a 
function of z only. Note that the last term of the expression for o 
exists only in the top layer. 

The corresponding wave-induced driving force per unit area (hen- 
ceforth called "force", as the term "stress" has already been used 
for the effective stress tensor) can be elaborated to 
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1   3E    *  t     \  ^ (8) 

in which D denotes the dissipation rate of the wave field, and f 
and f_ are functions of z only. 

D 

-®- 

Figure 4 Decomposition of wave-induced force ("classical" theory) 

The wave-induced force according to (8) can be split into three 
parts, viz. (also see Fig. 4) 

* 4- TT i      3E - a surface part:        F  = - 77 ^r~ s.    I  oX. 1        1 

- a depth-invariant part: F.  = h 75- 1 h  j + n  t7" 

- a depth-varying part:   F 

(9) 

(10) 

1 1 

The depth-invariant part of the force is fundamentally unable to 
drive a circulation current and is therefore disregarded here. 
The depth-varying part is basically able to drive a circulation, but 
it is usually assumed weak enough to be disregarded. 
This leaves the surface part, which acts at the mean water surface 
like a wind stress. It corresponds with the force at the wave trough 
level in various undertow models (Svendsen, 1984; Stive and Wind, 
1986). 

According to Eq. (9), the force will be non-zero in non-breaking 
(e.g. shoaling) wave fields. This is a major inconsistency of the 
model. If there is no ambient current and no wave breaking, all of 
the above results stem from a description of an ideal fluid in irro- 
tational motion. The surface force resulting from this theory, how- 
ever, will give rise to an infinite vorticity when applied to an 
ideal fluid body. 

Wave-induced forcing (revised theory) 
In a genuinely uniform situation, there will be no gradients in 

global parameters, such as E, and hence there will be no surface 
force and no inconsistency. From a practical point of view, however, 
a model should cover more than this trivial case. 

Any deviation from uniformity in the "classical" model gives 
rise to the aforementioned inconsistency. Upon closer investigation, 
this is basically due to the assumption of quasi-uniformity of the 
domain and the global wave field parameters, which underlies the 
description of the vertical structure of the wave motion in the 
"mild-slope" approximation (Berkhoff, 1976): 
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D     3 
u y =  -< u(z) [•  cosx        with: x = ut ~ kx (12) 
P J   I P(z) 

w = w(z) sinx 

In this approximation, each of the amplitude functions u, p and 
w is strictly similar in every vertical of the domain. Spatial non- 
uniformities only affect their scaling. 

In order to achieve consistency of the model, we shall relax the 
mild-slope approximation. Going back to irrotational motion in a 
domain with a mildly sloping bottom and weakly non-uniform global 
wave parameters, we can take the classical solution as a basis and 
perturb this for small non-uniformities. In a horizontally ID case, 
oriented along the X-axis, this yields in a first-order approxima- 
tion (see De Vriend and Kitou, 1990, for further details) 

ri = fj cosx (13) 

3z,   3z    8k   3n 

u - u(Z) cosx + fu [ax" . 33T ' 3X ' 3X ; ^   sin* (14) 

3z,   3z    3k   3n 

w - w(Z) sinx 
+ f

w (^T ' 3X^ ' 3X ' 3X '' Z^ Sin* (15) 

in which the functions f  and f  depend linearly on the gradients of 
u      W      " 

the global parameters z  , z  , k and n. 

Substituting this result into the expressions for the effective 
stresses yields 

5iJ,k- (N"^ E fij(zk} +l6knE (16) 

3z   3z   3k 3E 
<u.)kw> - (N-%) S fE (^ , ^ , jj i z] + fE,(z) ^ (17) 

in which f.. and f , are functions of z only, and f„ depends linear- 
ly on the gradients of z. , z and k. Note that, unlike Eqs. (14) and 
(15), the effects of the amplitude variation are separated and yield 
the energy-gradient term of (17). 

Also note that (16) is identical to (7), i.e. in a first-order 
approximation the residue of the horizontal momentum flux is not 
affected by the global non-uniformities. 
In contrast with the classical theory, however, the vertical momen- 
tum flux is deviating from zero now! 

Although we have only derived the revised theory for a 1-D case, 
it seems reasonable to assume, that similar results will be found 
when applying the same idea to horizontally 2-D situations. 
Let us therefore assume, without formal proof, that in such a situa- 
tion the vertical momentum flux contribution (17) can simply be ro- 
tated into the direction of wave propagation. 
In that case, elaboration of the wave-induced driving forces yields 

D  w 
F.   = — e. fn(z. ) + irrot. terms (18) 
X j It   C  1  1)  K 
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The irrotationality of the last terms in this equation refers 
primarily to the horizontal plane, but, upon closer inspection, 
these terms are also irrotatlonal (uniformly distributed) in the 
vertical. Hence this part of the force is basically unable to drive 
a circulation current and can be disregarded here. 
The remaining part is proportional to the energy dissipation rate of 
the wave field (cf. Longuet-Higgins, 1970; Battjes, ^S^and it 
turns out to be concentrated in the top layer, where the <uw>-term 
reaches its highest value and where the dissipation actually takes 
place (Fig. 5). 

1 ;' = + + 

i G\ (^ - 

Figure 5  Decomposition of wave-induced force (revised theory) 

The inconsistency of the classical model has now been removed: 
if the flow is inviscid, there is neither dissipation, nor wave- 
induced current forcing. Apparently, the vertical momentum flux 
term, which is the only part of the forcing influenced by the pre- 
sent extension of the wave model, plays a key role in achieving con- 
sistency (cf. Svendsen and Lorenz, 1989, for waves on a sloping bot- 
tom, and Deigaard and Freds^e, 1989, for breaking waves). 
This may seem to be in contrast with Stive and Wind's (1986) obser- 
vation, that the <uw>-term, when evaluated on the basis of measured 
data, is relatively small. We would like to point out, however, that 
the principal effect of this term is concentrated in the top layer 
of the fluid, between the troughs and the crests of the waves. Stive 
and Wind's data set does not extend to this area. 

Role of bottom friction and wind-input 
Although the formal derivation of (18) is based on the  inviscid 

flow assumption, the wave boundary layer can easily be included. 
There, again, the <uw>-term plays a prominent  part  (Longuet- Hig- 
gins,  1953;  also  see Craik, 1982): it yields the driving force of 
the boundary layer streaming. 

In general, the forcing will be located where the dissipation of 
organized motion actually takes place (cf. Nairn et al., 1990). 
As illustrated by Fig. 6, this will be in the surface layer for 
wave-breaking and wind-input (negative dissipation!), in the bottom 
boundary layer for bottom friction, and probably throughout the 
water column for wave-turbulence interaction in an ambient turbulent 
flow. 

It may be clear, that in a depth-integrated current model out- 
side the surf zone the contributions of the various types of wave 
energy dissipation ought to be weighted according to their location 
in the vertical. They cannot simply be piled up in a current-driving 
body force, which is implicitly assumed (via the assumptions  under- 
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lying the depth-averaging) to be uniformly distributed over the ver- 
tical. This would imply too much emphasis on the forcing associated 
with bottom friction, and too little on the wind-induced forcing. 
Unfortunately, this is exactly what is done when putting the results 
of a wave model, including effects of wind-input and bottom fric- 
tion, into a classical radiation stress and wave-induced force com- 
putation, and driving a depth-averaged current model with the resul- 
ting forces. Models of this type covering large areas with mainly 
non-breaking waves should therefore be considered with caution. 

SURFACE ROLLER 

1RROTAT10NAL 
WAVE MOTION 

BOTTOM BOUNDARY LAYER 

°b 

irrotational 
forcing only 

Figure 6 

Location of wave-induced 
current forcing 

Evaluation for broken waves 

Roller concept 
According to a concept introduced by Svendsen (1984), a broken 

wave of the spilling type can be considered as a harmonic carrier 
wave with a surface roller at its front face. This roller introduces 
an additional complication for the surf zone. 

Since the roller moves with the wave celerity c, its contributions 
to the wave-averaged fluxes of mass, momentum and energy are given 
by (also see Deigaard and Fredsoe, 1989) 

mass flux: p 

momentum flux: p 

energy flux:   p 

Ac 
\ 
Ac2 

X 
Ac3 

K 

(19) 

(20) 

(21) 

where \  denotes the wave  length and A the  cross-sectional area of 
the roller. According to Svendsen (1984), the latter quantity can be 
estimated at 0.9 H2 , 

cw 
if H  is the height of the carrier wave. 

The total mean energy flux due to a broken wave follows from 

E.c     =opgH2c     + br g       8  r  "    cw g 
Ac3 

(22) 

in which c is the group celerity of the waves. With the above ap- 
proximation of A and the shallow water approximation of the phase 
and group celerities, this leads to (cf. De Vriend and Stive, 1987) 

br = E (1 + '&> (23) 

Both (22) and (23) express, that there is a difference between 
the energy contents of the carrier wave and the broken wave as a 
whole, due to the contribution of the roller (Fig. 7). 
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transformation propagation 
+  dissipation 

 i 

Uln=Eog 

roller's»">s. 
ip«H^ 

•sUbr = Ec6 

carrier wave 

ucw = I^HI^T^S^^^ 

Hence it makes a difference, 
whether we describe the waves 
by their bulk energy density, 
e.g. by solving an energy ba- 
lance equation including a dis- 
sipation term, or by the height 
of the carrier wave, e.g. via a 
breaker height criterion. In 
the former case, the roller 
effect is already included in 
the computed energy density, 
E, , whereas in the latter case 
the roller contribution has to 
be accounted for explicitly. 

Figure 7 Energy flux due to 
broken waves 

Wave-induced mass flux 
The wave-induced mass flux, found by adding the contributions of 

the carrier wave and the roller, reads 

M + P 
Ac 

br   c   ^ X. 

or, making use of Eq. (23) and the underlying assumptions, 

E,. 
M br 

br 
c 

(24) 

(25) 

Apparently, the mass flux, at least in this approximation, can 
be expressed in terms of the bulk energy density of the broken wa- 
ves, without any additional term to account for the roller contribu- 
tion. 
Note, however, that this is only valid as long as the shallow water 
approximation applies to c and c . 

Wave-induced forcing 
Eq. (18) gives the wave-induced forces in terms of the energy 

dissipation rate, including the effect of breaking. Hence, it is the 
most convenient to derive these forces from a wave model that des- 
cribes the decay of the bulk energy density by solving an energy 
balance equation including dissipation. In that case, the roller 
contribution in D needs not be calculated explicitly. 

If the wave model describes the height of the carrier wave, e.g. 
via the breaker height criterion H, = yh, the dissipation rate has 
to be calculated from 

D = -!x[f PeHcwcg + PT^ (26) 

Here  the  roller contribution has to be taken explicitly into ac- 
count. 

Wave influence on turbulence effects 

Waves also exert their influence on the mean  current  through 
turbulence  and boundary shear stress. Non-breaking waves affect the 
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near-bed water motion and the bed shear stress (for instance, see 
Van Kesteren and Bakker, 1984, or Davies et al., 1988), and they are 
also suspected to interact with the turbulence higher up in the 
water column. 
Broken waves introduce an additional turbulence production mecha- 
nism, which can be of significant influence in a large part of the 
vertical (Justesen et al., 1986), and possibly also in the horizon- 
tal (Wind and Vreugdenhil, 1986). 
In the transition zone, where waves start breaking, there is a 
transformation of organized wave motion, through overtopping and 
roller formation, into turbulence. Nairn et al. (1990) show, that 
this transition process should be taken into account when modelling 
the currents in this zone. 

Starting from the Boussinesq hypothesis, so from a scalar eddy 
viscosity, there is a range of turbulence models and bed stress mo- 
dels at our disposal. Very few of these models, however, include 
wave effects in a well-validated manner. 
Without going into details, we will consider three types of models, 
indicate how wave effects can be included and assess the state of 
the art. 

Partial-slip model 
Leendertse (1987), in his 3D-hydrostatic current model, uses a 

combination of a constant eddy viscosity and a partial-slip condi- 
tion at the bottom 

3U 
Vt 3z z  - A|U1|U1 (27) 

in which the factor A is the key element of the model. It has to be 
derived from known shear stress descriptions, such as Chezy s or 
Manning's model. 
This technique, sometimes referred to as Bazin's method, has proved 
rather successful in plane or slightly disturbed steady shear flow 
(e.g. in rivers and well-mixed estuaries; Engelund, 1974). As far as 
we know, it has never been shown to work equally well for strongly 
distorted oscillatory shear flow. 
When attempting to apply this concept to the coastal situation, with 
its strongly distorted 3D flow and its complex shear stress rela- 
tionships, the determination of A becomes rather laborious, if pos- 
sible, at all. In view of the rather weak physical basis, the effort 
to further work out this concept seems not justified. 

Algebraic eddy viscosity model 
Algebraic eddy viscosity models are widely used in engineering 

applications. Very often, this is combined with a similarity assump- 
tion, which, for a simple pressure-driven shear current, boils down 
to 

vt = vt fv(z) (28) 

A parabolic shape function f , combined with appropriate bounda- 
ry conditions, leads to the well-known logarithmic velocity profile. 
The depth-invariant scaling factor, v , reflects the turbulence pro- 
duction mechanism. In plane shear flow, for instance, v is propor- 
tional to the bottom shear velocity. 
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A way of including wave effects into this type of model is to 
adjust v for wave-induced turbulence generation. In principle, this 
can concern only turbulence generated at the bottom, since other 
production mechanisms are likely to correspond with other vertical 
shape functions. This means, that breaker-generated turbulence is 
not included, nor the interaction of waves and turbulence throughout 
the water column. 
It may be possible to model the various wave-effects on turbulence 
separately and to superimpose the results. The eddy viscosity is a 
non-physical artefact, which is unsuited for superposition, but 
superimposing turbulence kinetic energy contributions seems a defen- 
dable case (Deigaard et al., 1986). 
At the eddy viscosity level, this would mean a quadratic composition 

„   =  [fv,   f   (z)}*  ^       +   fv,.   f   (z)]*       , .       +    ]% (29) t       L l   t     v       •'bottom       '   t     v       'breaking J 

shear 

In practical model applications, a vertical resolution which is 
sufficient to describe the details of boundary layers is seldomly 
feasible. In those models, the boundary layer is described with a 
separate, semi-analytical boundary layer model, which is matched 
with the numerical solution, e.g. 

u* 
U = — In — (30) 

K       Z 
O 

in which U. denotes the wall shear velocity and z is the point of 
zero intersection of the velocity profile. In general, z is given 
in terms of roughness parameters, and the matching with the numeri- 
cal model goes via U . 
Waves are known to influence both quantities: they tend to enhance 
the effective wall shear stress, and they shift the point of zero 
intersection of the mean velocity further away from the wall (see, 
for instance, Van Kesteren and Bakker, 1984). 

Higher-order turbulence closure 

A more sophisticated way of describing turbulence is the so-cal- 
led higher-order closure, based on one or more coupled transport 
equations for turbulence properties, such as the kinetic energy. 
Typical examples are the k-model (e.g. Deigaard et al., 1986) and 
the k-E model (e.g. Wind and Vreugdenhil, 1986). 

Higher-order turbulence models have proven their value for 
intra-wave current modelling (e.g. Davies et al., 1988). At the 
level of wave-averaged current modelling, however, their present 
applicability is limited by a lack of basic knowledge. Possibly im- 
portant turbulence production mechanisms (wave-turbulence interac- 
tion) are still poorly known, and the knowledge of the intra-wave 
processes has hardly been parameterized in terms of mean-current and 
global wave properties. 

On the other hand, depth-averaged models including wave breaking 
as a source of turbulence production (Battjes, 1983; Wind and Vreug- 
denhil, 1986) seem to work well. It has to be pointed out, however, 
that these models have only been tested critically for the inner 
surf zone, where this type of production is predominant. 
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For other areas, wave-averaged higher order turbulence models  have 
not yet been substantiated. 

Conclusions 

The principal conclusions from the work presented herein can be 
summarized as follows. 

The wave-induced mass flux has to be included in the equation of 
continuity for the top layer. It will not always be compensated 
by a return current in the same water column, but can give rise 
to 3D circulations. 
The <uw>-term in the wave-averaged momentum equation plays an 
essential part in the consistency of the model in spatially non- 
uniform situations. 
The classical mild-slope approximation leads to inconsistency of 
the model, because it yields inappropriate estimates of the <uw>- 
term. An extended linear wave model for mildly non-uniform situa- 
tions leads to consistent results. 
Wave-induced current forcing is located there, where the wave 
energy dissipation actually takes place. This means, that the 
forcing due to spilling breakers takes place near the water sur- 
face, and that forcing associated with bottom disspation takes 
place near the bottom. 
The  necessity  to  include  a roller contribution when modelling 
wave-driven currents depends on whether the bulk energy density 
of the breaking waves is decribed, or the carrier wave height. 
Only in the latter case, a roller contribution has to be taken 
explicitly into account. 
So far, the application of higher-order turbulence models in 
wave-averaged current models is not supported by sufficient phy- 
sical knowledge, except maybe for very specific situations. 
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