
CHAPTER 67 

Application of The Second-order Mode Coupling Equation 
to Coastal Engineering Problems 

Mitsuhiro Tanakat 

Abstract 

The Second-order Mode Coupling Equation (SMCE) is applied 
to the 3-dimensional evolution of a solitary wave the crest-line 
of which is not straight but bent initially. It is found that the 
bent solitary wave recovers a straight crest-line spontaneously 
by producing a nonuniform distribution of waveheight and hence 
that of propagation speed along the crest-line. 

1. The Second-Order Mode Coupling Equation 

1.1 The Mode Coupling Equation 

As pointed out by Zakharov(1968), the motion of water waves 
can be expressed as a Hamiltonian system by using the total en- 
ergy as the Hamiltonian and the complex amplitude spectrum 
b(k,t) defined by 

b{k, t) = y/g/2u(k) fj(k, t) + i^u{k)/2g 4>s{k, t) (1) 

as the canonical variable. Here fj{k,t) and cf)s(k,t) are the Fourier 
transform of the free surface displacement r/(x,t) and the velocity 
potential <f>(x,z,t) evaluated at the free surface respectively, and 
ui(k) — y'fl'fctanhfc/i, with k = |fc|. 
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When the Hamiltonian is approximated by a power series 
of b(k,t) truncated at the (n+l)th-order, the resulting Hamil- 
ton's equation which governs the evolution of b(k, t) contains n-th 

power of b(k, t) and is called here the n-th-order mode coupling 
equation. 

In the derivation of the mode coupling equation, it is usu- 
ally assumed that the nonlinearity of the underlying wave field is 
small (i.e., ak <C 1) and that the bottom is flat (i.e., h — const.) 
and impermiable. With regard to the value of kh, however, no 
assumption is made and the equation can be applied to waves 
of any wavelength so long as the above-mentioned assumptions 
hold. 

The third-order mode coupling equation reduces to the well- 
known Zakharov's equation if only the near resonant interactions 
are taken into account among all the possible four-wave inter- 
actions. Zakharov's equation is further simplified to give the 
nonlinear Schrodinger equation when the assumption of narrow- 
ban dedness of the wave field is added. 

Here in this work, we forcus our attention to the Second- 
order Mode Coupling Equation which we'll call the SMCE for 
short. Following the notation of Stiassnie and Shemer(1984), the 
SMCE can be expressed as follows, 

^P- + iu(k)b(k) 
(Jib 

+ i I fvWbikxWfaWk-ki - %)dkxdkt 

+ i I! vWb*(kl)b(k2)6{k + h ~ £2)^1 d*2 

+ i 11V(3)6*(Jfci)6*(Jfc2)^(ifc + h + k2)dkidk2 = 0. (2) 

This equation reduces to the well-known K-dV equation under 
the assumptions that the water is shallow (i.e., iAcl) and all 
the wave components propagate only in the positive ^-direction. 

There are two major reasons why we choose the SMCE here 
and discard all the higher order nonlinear interaction terms. The 
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first reason is; It can be shown that the magnitude of the third- 
order terms of the mode coupling equation relative to the second- 
order ones is given by the wave steepness ak of the underlying 
wave. This implies that the third-order terms as well as all the 
higher order terms would give only negligibly small contributions 
to the motion of a solitary wave which we focus our attention 
to in this work, because it is generally true for a long wave like 
a solitary wave that a/h may be 0(1) while kh is very small, 
resulting in a very small value of ak. 

The second reason to choose SMCE is much more pragmatic. 
The n-th order mode-coupling equation generally contains n-tuple 
convolution sums, and the number of operations required per 
each time step would increase as Nn with N being the num- 
ber of Fourier modes involved in the calculation. However, the 
operation count necessary for the evaluation of the second-order 
convolution terms increase only as NhxN instead of N2. This is 
because these terms can be rewritten to a form to which the pseu- 
dospectral method is applicable and so can be evaluated fast by a 
series of FFT's and inverse FFT's. This reduction of the number 
of numerical operations becomes crucial when one is to persue a 
3-dimensional problem like the one shown in Sec. 2 of this work, 
because for such a 3-D problem the number of Fourier modes 
required for a reasonably accurate expression of the wave field 
inevitably becomes large. For such a problem with large number 
of Fourier modes, the higher order mode coupling equations like 
Zakharov's equation, however valuable they may be from the the- 
oretical point of view, would require unrealistically vast amount 
of CPU time on the computing facilities now available and would 
have only a very limited practical value. 

1.2 Accuracy of The SMCE 

Before proceeding to an application of the SMCE to a practically 
interesting problem, it may be sensible to know how better the 
SMCE approximates the behaviour of long waves than the K-dV 
equation which is one of the most standard equations for long 
wave problems. 

What we've done is to input the steady periodic solution of 
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fully nonlinear water wave equations to the SMCE and the K- 
dV as the initial condition and observe how strongly this steady 
profile is deformed at later times. In the calculation shown below, 
we tentatively fix the water depth so that kh = 0.5. For this 
value of kh, the linear dispersion relation of the K-dV equation 
ui{k) — y/ghk (l — {kh)21%} is a very good approximation of the 
exact one u>(k) = y/gk tanh kh with the error being only less than 
0.3%. In this sense the water is sufficiently shallow and we expect 
that the K-dV equation approximates the steady translation very 
well. 

The deformation of the wave form is measured by a quantity 
D{t) defined by 

D(t)=  I   {r](x,t)-H(x-ct)}2dx/ !   H2dx, (3) 

where H is the profile of the steady periodic wave solution em- 
ployed as the initial condition and c its propagation speed. As 
the initial condition is an exact steady solution of the fully non- 
linear problem, the deformation D(t) should remain zero if the 
approximation is 'ideal'. Therefore, we can discuss the accuracy 
of various different approximations by comparing the magnitude 
of D{t) given by those approximations. 

Fig. 1 Growth of Deformation D{t) for a steady periodic solution 
with ak = 0.1 and kh = 0.5 
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Figure 1 shows the growth of D(t) for the steady wave with 
ak = 0.1. It can be seen that D(t) given by the SMCE remains 
about 500 times smaller than that of the K-dV equation during 
the period of time considered, implying that the SMCE gives 500 
times more accurate result than the K-dV equation does, at least 
for the steady translation of the particular wave considered here. 
It may be noted that the length of time shown in Fig.l is fairly 
long for the particular steady wave, and during which the wave 
has propagated more than 250 times the water depth. 

If the nonlinear terms of both the SMCE and the K-dV are 
calculated by the pseudospectral method, and the time-stepping 
of both equations are carried out by Ilunge-Kutta-Gill method, 
the SMCE requires about three times longer CPU time than the 
K-dV equation does. 

2. Three-Dimensional Evolution of A Bent Solitary Wave 

2.1 Initial Condition 

As an application of the SMCE to a 3-dimensional problem, we in- 
vestigate the time evolution of a wave which is basically a Boussi- 
nesq solitary wave propagating in the positive ^-direction but 
the crest-line of which is slightly bent initially. More specifically, 
we've prescribed the initial condition as follows: 

V(x, V> 0) = a0 sech2 {(x - xc{y))/D} (4a) 

ct>s(x,y,0) = vW3tanh{(a; - xc(y))/D} {4b) 

where D is the width of the solitary wave which is related to 
the waveheight ao by D = -\/4(l + ao)/3ao. In the calculation 
reported here, the initial shape of the crest-line xc(y) is chosen 
tentatively as xc(y) = XQ — ecos(2iry/Ly) with x0 being some 
appropriate constant. The parameter e determines the magnitude 
of the y-variation of the crest position, while Ly determines its 
length-scale. For the sake of numerical computation, the wave 
field is assumed to be periodic both in the x- and y-direction 
with the period Lx and Ly, respectively. The period in the x- 
direction Lx is taken sufficiently long so that the existence of the 
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periodic boundary would not affect the evolution of the wave field 
seriously. The water depth is normalized as 1. 

Figure 2 shows the bird's-eye view of the wave form at t = 0 
(Fig. 2a) and t = 30 (Fig. 2b) when the crest is not bent initially. 
The values of parameters chosen for this calculation are ao = 0.2, 
Lx = 61.3, Ly = 5, Nx = 128, Ny = 12 and At = 0.5. Here Nx 

and Ny are the number of mesh points in the x- and y-direction, 
respectively, and At is the step-size of the time-integration which 
is carried out by Runge-Kutta-Gill scheme. The total CPU time 
is about 57 sec. on FACOM M780 of the Computation Center 
of Nagoya University. Although the initial condition is not a 
steady solution of the SMCE but of the Boussinesq equation, 
the solitary wave seems to be propagating almost steadily on the 
SMCE as well. This is quite reasonable because the Boussinesq 
soliton should be a good approximation of the steady solution of 
the SMCE when the waveheight is not large as in the present case 
where aQ = 0.2. 

(b) 
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Fig. 2 Wave-form when the solitary wave is not bent initially. 
(a) t = 0, (b) t = 30. 

2.2 Scenario of 3-D Evolution 

An example of the evolution of a bent solitary wave is shown in 
Fig. 3. All the parameters are the same as the previous case, the 
only difference being that the amplitude of the initial bend e is set 
equal to 1 instead of 0. Figure 3a shows the bird's-eye view of the 
initial wave form, and the time evolution that follows is shown in 
Figs. 3b-3f. The scenario of the evolution may be summarized as 
follows: 
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Fig. 3 3-D evolution of a bent solitary wave. a0 — 0.2, Lv — 5 and 
e= 1. 

(1) The waveheight spontaneously starts to increase around y — 0 
and y — Ly where the wave crest is made behind initially, while 
it starts to decrease around y = Ly/2 where the crest is put 
forward. As it is generally true for long waves that the higher 
waves propagate faster than the lower, this unevenness of the 
waveheight brings out such a distribution of propagation speed 
along the crest-line that would help the bent crest-line go back to 
a straight line. (Fig.3b) 
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(2) Around y = 0 and y = Ly where the crest is now propagating 
faster because of the increased waveheight, the water just behind 
the crest appears not to be able to keep up with the crest, and 
as a result of that, a depression of water surface appears. On the 
other hand, around y = Ly/2, the water just behind the crest 
seems to be overtaking the crest which is now propagating by a 
reduced speed, and a swell up of water surface is observed behind 
the crest. (Fig.3c) 

(3) The lateral distribution of the free surface displacement be- 
hind the crest-line that has appeared in (2) evolves into a stand- 
ing wave-like oscillation. The period of oscillation coincides ap- 
proximately with that of a linear long wave with wavenumber 
k = 2ir/Ly. By this time, the recovery of a straight crest-line 
has been accomplished, and a 2-dimensional solitary wave with a 
straight crest-line is emerging out of the traisient wave motion. 
(Figs.3d and 3e) 

(4) The initial condition finally splits into two parts. One is a 2-D 
solitary wave with a straight crest-line which propagates steadily 
with a speed given approximately by 1 + a/2, and the other is a 
standing wave-like oscillation which appears to stay around the 
position for all the time, the position where the wave was given 
initially. This difference between the propagation speed of these 
two parts brings out the appearance of a region with a calm free 
surface between them. This calm region grows wider as time 
goes on and the solitary wave propagates further from the initial 
position. (Fig.3f) 

Figure 4a shows the top-view of the crest-line at various time- 
steps in which it can be seen clearly how the crest-line approaches 
a straight line. In order to see this phenomenon more quantita- 
tively, we show in Fig.4b the evolution of a quantity X^ev defined 
by 

Xdev(0=/     {xc(y)-x^}2dy, (5) 
Jo 

where xc(y) is the ^-coordinate of the crest-line in terms of y and 
x^ is the average of xc(y). By its definition, -X^ev vanisnes when 
the crest-line is straight. 
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Fig. 4 (a) The top-view of the crest-line for 0 < i < 30. (b) ^dev, 
i.e., the deviation of the crest-line from a straight line, (c) 
The evolution of the maximum and the minimum waveheight 
along the crest-line ( ao = 0.2, Ly = 10 and e = 1 ) 

Figure 4c shows the evolution of the maximum and the min- 
imum waveheight along the crest-line. This figure shows clearly 
the spontaneous appearance of a nonuniformity of the waveheight 
right after the initial time, as well as its gradual relaxation and 
the return to a state of uniform waveheight. 

2.3 Ly — Dependence 

We've shown above that a solitary wave seems to have an ability 
to make its crest-line straight when it's bent initially by produc- 
ing a nonuniform distribution of the waveheight along the crest. 
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There are two important quantities that characterize this phe- 
nomenon. One is the characteristic time-scale of the phenomenon 
and the other is the size of the highest wave that appears dur- 
ing the transient motion. Figure 5a shows the independence of 
the characteristic time-scale which is defined as the time when 
X(jey(i) of eq.(5) attains its first local minimum. In the same 
figure is also shown by a dashed line the period of oscillation of a 
linear long wave with wavelength Ly. The result shows that the 
longer the length-scale of the initial bend, the longer it takes to 
return to a straight crest-line. 
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Fig. 5 (a) independence of the characteristic time-scale (b) in- 
dependence of the maximum waveheight that appears during 
the transient motion 

The maximum waveheight that appears during the transition 
divided by the initial height is shown in Fig.5b as a function of 
Ly. This figure shows that the higher wave appears as the length- 
scale of the initial bend is shortened or as the curvature of the 
initial crest-line is increased. For the type of initial condition we 
are now using, we can get a wave which is 2.6 times as high as the 
initial wave by bending its crest-line such that Ly=3 and 6 = 1. 
This result strongly suggests that it might be possible to make 
a solitary wave break without decreasing the water depth but 
by just bending its crest-line somehow. We've also investigated 
the dependence of the phenomenon on the initial waveheight ao 
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by changing cio from 0.1 to 0.5, but no appeaciable change in 
the characteristic time-scale or the maximum waveheight was ob- 
served. 

The crest-line of solitary waves that are observed on the 
beach are usually very long and nearly straight in spite of the un- 
even bottom topography over which they may have propagated. 
This might be related to the ability of a solitary wave as that 
shown above to keep its crest-line straight by adjusting the wave- 
height distribution along the crest when it is deformed by some 
external cause. 

3. A Simple Model 

In this section, we try to reproduce the phenomenon shown in the 
previous section by a simple model in order to understand intu- 
itively the principle that underlies the phenomenon. The model 
the detail of which is explained below is derived by an analogy 
with the motion of an axisymmetric (or cylindrical) solitary wave. 

The waveheight of a diverging axisymmetric wave which can 
be produced quite easily by throwing a stone into a pond is ob- 
served to decrease as the wave propagates outward and the crest- 
line of the wave is stretched. On the other hand, the waveheight 
of a converging axisymmetric wave which occurs when one hits a 
circular basin filled with water increases as the wave propagates 
inward and the crest-line is shortened. It is quite obvious that 
these changes of waveheight are the result of conservation laws. 

3.1 Assumptions of the Model 

Bearing this in mind, we now propose a very crude model to un- 
derstand intuitively the 3-D evolution of a bent solitary wave. 
The followings are the assumptions on which the model is con- 
structed; 

(1) Each point that constitutes the crest-line moves in the direc- 
tion normal to the crest-line at that point with velocity v given 
by v = (1 + a/2), where a is the local waveheight of the crest. 

(2) The waveheight a changes in such a way that mass or energy 
is conserved, (see Assumption (3) below.) 
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(3) The shape of normal cross-section at any point of the crest-line 
is similar to that of the K-dV soliton, and its horizontal length- 
scale is proportional to 1/V« when the local waveheight is a. 

3.2 Evolution Equations 

The shape of the crest-line and the distribution of the waveheight 
along it at time t is assumed to be described as x = x(a), y = y(<r) 
and a — a(a), where a is a parameter which plays a role of the 
Lagrangian coordinate. With this parametric representation of 
the crest-line, the Assumption (1) can be expressed as 

dx 

~dt 
= v = {l + a(<r)/2}n, (6) 

with 
n = (yj- xJ)/^/xl + y\. 

This is the evolution equation for the shape of the crest-line. On 
the other hand, the evolution of a(a) is governed by the Assump- 
tions (2) and (3) which require the following relations to hold. 
When mass conservation is assumed, 

a{x2
a + y\) = const. (7) 

along a ray ( i.e., a = const.), while 

a3(xl + yl) = const. (8) 

if energy conservation is assumed instead. 
3.3 Result 

Figures 6.a and 6.b show the top-view of the crest-line at various 
times and the evolution of X^ey defined by eq.(5), respectively, 
that are obtained by the model with energy conservation. Al- 
thought the model is quite a crude one and there would be a 
lot of possibilities to elaborate on it, it nevertheless expresses, at 
least qualitatively, the approach of a bent crest-line to a straight 
line as shown by these figures. 



SMCE APPLICATION 893 

>- 

5- 

(a) 

20 

X 
40 

Fig. 6 (a) The top-view of the crest-line for 0 < t < 40. (b) X^ev, 
i.e., the deviation of the crest-line from a straight line. ( 
a0 — 0.2, Ly = 15, e = 1 and the energy conservation eq.(8) 
is assumed.) 
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Fig. 7 (a) Ly-dependence of the characteristic time-scale (b) in- 
dependence of the maximum waveheight that appears during 
the transient motion.     Q : model with mass conservation, 

HI: model with energy conservation,     A: SMCE. 

The Ly-dependence of the characteristic time-scale and the 
maximum waveheight obtained by the present model are shown 
in Figs. 7a and 7b respectively. In these figures, the open squares 
show the result of the model with energy conservation, while the 
open circles show that of the model with mass conservation. The 
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result of the SMCE is also shown in the same figures by open 
triangles for the sake of comparison. 

It can be seen from these figures that the model with energy 
conservation generally gives much better results than the model 
with mass conservation. Especially, the characteristic time-scale 
predicted by the model with energy conservation almost coincides 
with that predicted by the SMCE as shown in Fig. 7a. This re- 
minds us of the well-known fact in the perturbation theory of 
the K-dV equation that the amplitude modulation of one-soliton 
induced by a small perturbation can be calculated correctly by 
using any of the infinite number of conservation laws except the 
first one which corresponds to the mass conservation. This some- 
what peculiar fact can be explained in terms of the non-secular 
condition of the perturbation analysis, (see for example Tanaka 
(1980)) 
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