
CHAPTER 62 

Spatial      variation      of      wave      group      statistics      and 
representative  wave-heights  of  swell 

Akiyuki   UKAI* ,   Takashi   YASUDA- • ,   Kazunori   ITCC • • 

Abstract 
This study derives a practical equation that can 

describe the weakly nonlinear waves having an arbitrary 
spectral form and propagating unidirectionally from 
deep to shallow water, and carries out the numerical 
simulation using the equation. Based on the simulated 
results, some investigations are made on the 
characteristics of spatial variation of wave group and 
representative   wave-heights   in   the   propagation   process. 

1.   Introduction 
Characteristics of grouped waves propagating from 

deep to shallow water are clearly important for 
engineering purpose, but are little made clear because 
of the difficulty of the observation in field. 
Regretably, most of usual investigations are concerned 
with the statistics of wave grouping derived from 
temporal wave registrations obtained at fixed locations 
and lack a view point that the statistics may change 
spatially   during   the   propagation   of   the   grouped   waves. 
Hence, in order to investigate on the spatial 

variations of the characteristics during the 
propagation from deep to shallow water, it is 
essentially required to develop a tractable equation 
that can be easily solved for the nonlinear waves 
having an arbitrary spectral bandwidth and propagating 
from deep to shallow water and employ a theoretical 
approach using the equation, instead of the approach 
based   on   the   field   observation. 
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In this study, we suggest a single tractable equation 
of spatial evolution type for describing the 
unidirectional propagation of swell and carry out 
numerical simulations using the equation. Further, 
based on the simulated results, we investigate 
intensively on the characteristics of spatial 
variations   of   wave   group   statistics   and   representative 
wave-heights   in   the   propagation   process. 

2.   A   model   equation   for   swell 
2.1   Derivation 

we derive a tractable equation that can easily 
describe weakly nonlinear waves having an arbitrary 
spectrum and propagating unidirectionally from 
moderately deep to shallow water, by modifying the 
dispersion term of the following perturbed KdV equation 
so as to give the correct linear dispersion relation of 
surface   gravity  waves. 

T)x + 
1 

--vt + n 
l l 

•w + fl; v^T" T 2 hVgK"     Q(gh)3'2 
(l) 

where the subscripts x and t denote partial 
differentiations with regard to them, x the horizontal 
coordinate, t the time, TJ the temporal water surface 
elavation.h the mean water depth in the propagation 
process   and   g   the   accelation   of   gravity. 

To our best knowledge, there is no equation of spatial 
evolution type such that can describe actually the 
propagation process of weakly nonlinear waves having 
arbitrary spectrum. The necessary conditions for the 
equation  are  as   follows: 
i) Only if the temporal water surface elevation at any 
fixed location is given as a boundary condition, the 
equation can describe its spatial evolution over a 
sloping bottom from deep to shallow water, 
ii) The equation can be applied to the swell having an 
arbitrary   spectrum. 
iii) The equation should be tractable so as to be for 
numerical   simulation   of   the   long   distance   propagation. 

An equation of wave motion of spatial evolution type 
can be written for linear waves having correct 
dispersion relation and propagating on the moving 
coordinate   with   the   speed   of  Vgh   as 

where 

dxfj-\- \      F{r—a)day)da=Q     , 

27rJ-oo       c(a>) 

T=\dxjVgh—t,   w=2nf , 

(2) 

(3) 
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and   c(u)   is   the   wave   speed   of   linear   dispersive   waves. 
Here,  assuming  its   solution  as 

oo 

V= S Am(x) exp (iwmt) (4) 
— oo ' 

and   treating   this   equation   on   the  frequency  domain,   we 
obtain   the  following   mode  rate  equation. 

~jr+ik(com)[C(w)/ Jgh -l]Am= 0 , (5) 
tn:  — oo ~ oo 

Further, introducing the nonlinear term 3/27jj?t and the 
shoaling term hxrj/4 included in the perturbed KdV 
equation shown in eq(l), we obtain a single tractable 
equation of spatial evolution type and call it as a 
model equation for swell unidirectionally propagating 
from   moderately   deep  to   shallow  water. 

dAmldx*+ikt(c*-h*V*)Am 

+   E   &k*k+*/'Am-jAj=0 , (6) 
Jm-oo    I 

m:  —oo~oo 

x*=x//?o,   k% = k(o)m)ho,   h*-h/ho, ) .   . 

c*=c(<wOT)/ Vgho,   Am/ho^Amh*-1/*  »   . 

This     equation   has   two   conserved   quantities   of   1st   and 
2nd   order  are   derived   from   the   model  equation  as 

£*."T:£F I?-.!>"* H>.       (8) 

2V«A 

where 

Lfe]=  S  z"[v/(/Jm//i)tanhA:MA -kjA^' , (10) 

Assuming the periodicty of 77 with an observation period 
Te on time domain, we can put the right hand sides of 
eqs(8) and (9) zero, because of the relation Am =A-» and 
the fact that o(km ) is the odd function of km . Thus, we 
can evaluate the accuracy of the numerical solution by 
examining the conservativeness of Ii and I2 . . Here, the 
equation was solved under the accuracy that the 
errors for both the conservation laws are kept within 
0.1   %. 
Furthermore, it should be emphasized that the 

modulational instability occurs in the wave train 
governed by the model equation, although the nonlinear 
term   of   the   equation   is   identical   with   that   of   the   KdV 
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Fig.    1 
Wave train of a quasi-monochromatic 

wave train. Fig. 2    Modulation of peak and 
its side band modes. 

equation which cannot express the instability. Figure 1 
shows the spatial evolution of a quasi-monochromatic 
wave train governed by the model equation. Figure 2 
shows the modulation of the peak mode and its side- 
band modes and explains clearly that the modulation 
and   demodulation   successively   occur. 

2.2   Accuracy 
Since the model equation is not derived consistently 

from the fundamental equation of hydrodynamics, we are 
required to examine the applicability before carrying 
out the numerical simulations of long distance 
propagation   of   swell   through   the   model   equation. 

At first, we examined the accuracy of the model 
equation by comparing with the exact Stokes waves. 
Figure 3 [Yasuda et al., 1989] shows the applicable 
region of the model equation and the KdV equation. The 
boundaries in this figure indicate the critical values 
of ka and kh under which the maximum value of the 
error   Ei ,   defined   by 

Et(t) -s r/fc /fir/* 
{n{oc,t)-Y{x-ct)fdx   \        Y*dx (ID 

is kept within 0.06. Here, r, denotes the numerical 
solution of the model equation, Y the exact Stokes wave 
solution and c is phase speed. Hence, Ei can be used 
as an error criterion indicating the accuracy of the 
numerical solution to the exact solution of steady 
wave. It could be said that the model equation is 
applicable within the boundaries shown in figure 3 and 
that the model equation is superior to the KdV equation 
in the range of kh>0.8. However, the model equation 
does    not    unexpectedly    work    so   well   for   the   waves   in 
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^ Fig.  4 
Flg-  3 Temporal water surface elevations 

Applicable region derived measured at P.l.and P.2 
from   the   comparisons   with 
the exact Stokes wave. 

-Calculation 
Experiment 

Fig. 5 
Power spectra measured 
at P.l and P.2 

Fig. 6 
Comparison of power spectra 
at P.2 between the experimental 
result  and  the  caliculated  one. 

deeper   water     than   kh>3.3,   because   its   nonlinear   term 
is   valid   only   for   long   waves   with   kh<<l. 
Secondly, we examined experimentally the applicability 

of the model equation to the quasi-monochromatic waves 
suffering from the modulational instability. Figure 4 
shows the temporal water surface elevations at P.l and 
P.2 of a modulational wave train generated in a wave 
flume [lmxlmx54m] having a servo-controlled wave 
maker . The distance between the measuring location P.l 
and P.2 is kx=42w in this case. It is conjectured from 
Fig. 5 that the modulation observed at P.2 is 
primality due to the growth of the side-band modes of 
the  spectral  peak   . 

Figure   6   shows   the   comparison  of  power  spectra  at   P.2 
between    the    measured    result    and    the    simulated    one. 
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Comparison   of   water    surface    profile   at   P.2    between   the 
experimental result and the simulated one. 

Figure 7 indicates the comparison of temporal wave 
profile at P.2 between both the results. The simulation 
carried out by making the waves measured at P.l 
propagate to P.2 through the model equation. Both the 
results corresponds to each other in rough trend. 
However, it should be noticed that the modulation of 
the simulated waves is considerably weak and the 
side-band modes of the simulated waves are not so 
strengthened in comparison with those of the measured 
waves. Hence,, it should be noted that the growth of 
the modulation is evaluated a little weakly as far as 
the   model  equation   is   used. 

Finally, we examined the applicability of the model 
equation to irregular waves having various spectral 
bandwidth, by generating the desired waves of which 
initial spectra are the Wallops type in the 
aforementioned wave flume and comparing the measured 
wave profiles at P.2 with the results simulated as well 
as the case of the quasi-monochromatic waves mentioned 
above. The error criterion E^ for evaluating the 
applicability of the model equation to the irregular 
waves   is   defined  as 

E* (x) = ^° (Vof-V^ydtj J%?b dt    s (12) 

This denotes the difference with the water surface 
elevation including the propagation speed between the 
simulated result n<s a i and the measured one not at P.2. 
The relation between the error criterion Ea and the 
Ursell number(Ur) is shown in Fig. 8. Qp in the figure 
denotes   the   spectral   peakedness   parameter. 
Figure 9 shows the comparison of temporal wave 

profile at P.2 between the measured result and the 
simulated one in the case that the aformentioned erroe 
Ez   is   0.23. 

3   Propagation   of   swell 
Numerical simulations using the model equation are 

made in order to investigate on the characteristics of 
spatial variations of wave grouping ,. by giving the 
following temporal water surface elevation with the 
desired      statistics     to     the      model        equation     as      the 
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Fig. 8    The relation between error criterion E2  and Ur. 
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Fig. 9    Comparison with experimental wave profile 
in   the   case   of     the   value   of   Es=0.23. 

boundary   condition   at  origin. 

7(0, r)= 2 2\A„\sm(2n/„r + e„) (13) 

where, £n is the random phase angle distributed 
uniformly between 0 and 2n, M the number of the 
Fourier modes and 21 ' in this study, An denotes the 
amplitude of the nth Fourier mode and is related to the 
spectral   density   S(f)   as 

(14) Aj= J2 J" •S (f)6(f-fj)df/T0 

The initial spectrum S(f) is given so as to have the 
Wallops   type     and   the   values     of   parameters   governing 
the spectral form are determined for the initial waves 
so as to have the desired statistics with the 
dispersion parameter kh, the nonlinear parameter ka 
and the spectral bandwidth parameter m. Here, k is the 
wave number which is correspondent to the frequency 
at    the    spectral    peak    and    is    calculated    through    the 
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Tablu 1   The relation between m and Qp. 

819 

m 5 15 30 55 

QP 2.00 4.04 5.90 8.07 

Fig.    10 

Wave    profile   of    numericaly    simulated    waves    during    the 
propagation (kh=2.0,  ka=0.15 and m=15). 

linear dispersion relation, and the amplitude a 
equals to the half of the significant wave-height 
Hi A • The value of m is about 5 in the case of wind 
waves and is over 15 for swell. Table 1 indicates the 
present  relation   between   m   and   Qp. 

Figure 10 shows the temporal water surface elevations 
at x/L = 0, 33 and 146 of the waves simulated with using 
the model equation under the initial statistics of 
kh = 2.5,   ka=0.15   and   m = 15. 

4   Spatial   variation   of  wave   grouping 
Groupiness Factor(GF) defined by Funke and 

Mansard[1979] is employed here as statistics of 
describing wave grouping and its spatial variation 
dependent on the initial values is investigated for the 
simulated   waves.   Figure   11   indicates   the   spectral   forms 

Fig.  11 

Variation of the spectral form of the wave shown in Fig.10. 
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of nonlinear waves shown in Fig. 10. The remarkable 
growth of the modulation at x/L = 33 is supposed to be 
due to the pronounciation of side-band modal 
components. 

2.0 

1 .5 

1 .0 

0.5 

2.0 

200       ,, 300 
x/L 

400 

(a) Nonlinear waves (b) Linear waves 

Fig.  12 
Influences of bandwidth parameter m on the spatial variation of GF 
of  nonlinear  and  linear waves.(kh=2.5,  ka=0.15   ) 

Figure 12(a) shows the spatial variation of GF of the 
waves simulated with the model equation under the 
initial statistics of kh = 2.5,ka=0.15 and some spectral 
bands of m = 5,15,30 and 55. The spatial variations of GF 
of linear waves under the same initial statistics are 
in Fig. 12(b), in order to show the influence of 
nonlinearity on wave grouping. It is found from the 
figures that not only the value of GF of nonlinear 
waves but also that of linear waves varies spatially 
during the propagation. The former variation is 
conjectured to be caused by the modulational 
instability, while the latter one is clearly due to 
linear combination of the Fourier modes. However, the 
former variation gets to exceed greatly the latter one 
and the influence of the nonlinearity becomes dominant 
as the value of m increases, that is, the spectral 
bandwidth   becomes   narrower. 
The influence of kh on the spatial variations of GF is 

examined. Figure 13 shows the influence under the 
initial statistics of ka=0.12,m = 5 and 30 and kh=1.04, 
1.72 and 3.11. In the broad band case of m = 5, the 
spatial variation of GF is not so dependent on the 
value of kh and the influence of kh is not so 
conspicuous. However, under the narrow band spectrum 
of m = 30, the difference between the case of kh=1.04 and 
those of kh = 1.72 and 3.11 is very large. This remarks 
that wave grouping catastrophically changes at the 
vicinity of kh=1.40, which is the critical point of the 
modulational instability in the model equation, under 
the  spectrum  of  finite   bandwidth. 
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Fig.  14    Influences of ka on GF under kh=3.11. 
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Fig.  15    Influences of ka on GF under kh=1.04. 

In oder to investigate the nonlinear effect on the 
variation of GF, we carried out some numerical 
simulations. Figures 14 and 15 show the influence of 
the value of ka on the variation of GF. The statistics 
of initial waves are kh = 3.11, ka=0.06 and 0.12, m = 5 and 
30   in   the   Fig.    14.   And,      those   of   initial   waves   in   Fig. 
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15 are kh=1.04, ka=0.03 and 0.06, m = 5 and 30. In these 
cases, the growth of wave grouping becomes 
strengthened as the spectral bandwidth get to be 
narrower from m = 5 to m = 30. These results show that the 
effect of nonlinearity on the growth of wave grouping 
could be almost ignored so long as the value of ka is 
less   than   0.12. 

1 .6 _j      |      |      p 
I   •   '   '   '   I 

1—I—I I I I I L. 

50 100 150 200 

X      ( m ) 
Fig.  16 

Influences of bottom slope on the spatial evolution of GF 

In order to investigate the effect of bottom slope on 
the variation of GF, we carried out the numerical 
simulation for three different values of bottom slope. 
The statistics of the initial waves are kh = 3.11, 
ka=0.06 and m=15, and the simulation results are shown 
in    Fig.16.    It    is    found that    the    bottom    slope    has 
little influence on the behavior of GF so long as the 
value of kh is larger than 1.3. From this result, we 
can conclude that the spatial variation of wave 
grouping should be considered as a result of the 
modulational instability rather than that of shoaling 
wave. 

6.   Spatial   variations   of  representative   wave-heights 
If wave grouping is a consequence of finely tuned 

focussing of linear wave trains or modulational 
instability of nonlinear wave trains , it is natural 
that the influence of wave grouping comes not only 
to a time sequence of zero-cross waves but also to 
representative wave-heights. Figure 17 shows spatial 
variations of representative wave-heights of the swell 
of which initial statistics are kh = 2.5, ka=0.15, m = 5 
and 30. Since the swell propagate on a flat bottom , 
the values of rjr n a , H and Hi/ 3 are almost invariant as 
the matter of course. On the other hand, the value of 
H„ a %   varies   greatly   in   the   propagation   process  and   the 
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Fig.  17    Spatial evolution of representative wave-heights. 
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Fig.  18 
Spatial   evolution   of   representative   wave-heights   in   linear 
wave field 

ratio of Hm a x /Hi , 3 often exceeds 2.0 that is the value 
employed in the design of offshore structures. Figure 
18 shows spatial variations of representative wave- 
heights of the liner wave under the initial statistics 
of kh = 2.5,ka=0.15 and m = 30. The value of H", Hi / 3 and 
Hi/is are similar to those shown in Fig.17(b). The 
value of H, ., varies in the prppagation process, but 
the ratio of Hm ,x/Hi/3 never exeed 2 in this linear 
calculation. Therefore the appearance of a region with 
Hm i«/Hi/s>2 which was observed in Fig. 18 can be 
ascribed to the nonlinear interaction. Figure 19 shows 
the relation between GF and H. ., under the initial 
statistics of kh = 2.5,ka=0.15 and m = 30. The variation of 
GF agrees well with that of H„ , x . This indicates that 
the variation of H„ , * is dependent on GF in the 
propagation process. Figure_ 20 shows the relative 
frequency of the ratio H„ a x /H derived from the surface 
elevation at each location in the propagation process. 
A solid line denotes the relative frequency of the 
waves of which zero-cross wave-heights obey the 
Rayleigh   distribution.   Although   there   is   no   significant 
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Fig. 19 
the present relation betweek GF and H» 
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Fig. 20 
Relative   frequencies   of   the   ratio   H«, a x /H at   each   location 
in the propagation process. 
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difference in the case of m = 5 between the result 
simulated by the model equation and that based on the 
Rayleighan, the difference between both the results 
becomes      significant      in      the      case      of      m = 30.      This 
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demonstrates that the consideration of the influence of 
wave grouping becomes necessary in the reliable 
prediction of design waves as the spectral band-width 
gets   to   narrower. 

7.   Conclusions 
The accuracy and applicable region of the model 

equation was made clear with respect to the wave 
statistics of kh and ka or Ur through experimental 
examinations. Wave groups seen in the swell having 
kh>0.14, ka>0.12 and m>30 are originated primarily by 
the modulational instability, although the other wave 
groups are generally consequences of linear combination 
of different, independent Fourier modes. Wave packets 
exhibited generally in the swell varies spatially 
during the propagation differently from the envelope 
solitons and should be treated as unsteady phenomena. 
The characteristics of their spatial variations were 
made clear through GF and representative wave-heights 
and were found to be dependent on the statistics of kh, 
ka and m. The maximum wave-height Ha ,x is closely 
reated with the wave grouping and the relative 
frequency of the ratio H, ,»/H considerably deviates 
from that based on the Rayleigh distribution under the 
narrow   band   spect-rum   of   m>30. 
The      authors      wish      to      express      their      thanks      to 

Dr.M.Tanaka  for   his   valuable   advices. 
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