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Abstract 

The aim of the work presented here is to propagate random 
waves from deep or intermediate water depth to the nearshore 
region with a Boundary Integral Equation Method (BIEM) which 
is able to handle the nonlinear effects that occur in the process. A 
two-dimensional (x,z) mild nonlinear model to propagate waves 
over an uneven bottom is presented here. It takes into account 
2nd order nonlinear effects of the wave transformation entering 
into shallow water. If energy dissipation is neglected, the flow 
field generated by the wave propagation can be described by a 
velocity potential formulation which is governed by the Laplace's 
equation in the domain. The results obtained from the model are 
time-dependent. The model is tested with solitary and irregular 
waves  and  compared  with  analytical  and  experimental  results. 

Introduction 

The previous work done by the authors, (Fernandes, 1988) 
and (Leitao and Fernandes, 1989), led to the evidence that the 
computer CPU time required by a linear BIEM model (which 
cannot handle nonlinear effects) was relatively small whereas 
the nonlinear one was prohibitively expensive for real problems. 
This high cost is primarily due to the moving free surface 
boundary because the operation count includes forming a new 
coefficient matrix and  solving the  system every time  step. 
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A mild nonlinear model, was developed to meet the needs 
of afordable computer time and significant nonlinear effects. A 
Stokes-like expansion provided second order terms of the 
kinematic and the dynamic free surface boundary conditions that 
were introduced into a BIEM model. The important advantage of 
this is that these free-surface conditions are now applied at the 
mean water level which precludes moving elements. A constant 
coefficient matrix is used in this case. The boundary is discretized 
into linear elements and the time stepping is based on multistep 
integrators. 

Basic Equations 

Considering the flow to be irrotational and inviscid and the 
fluid to be incompressible, the Laplace's equation for the velocity 
potential (<|>) is valid. 

V2<|) = 0 (1) 

This equation is subjected to a number of boundary 
conditions, namely: a) prescribed velocity (at the bottom or 
vertical   boundaries), 

f^ = Y(x,z,t), (2) 
3n 

where   n   is   the   unit   outward   normal;   b)   radiation   (at   vertical 
boundaries), 

^ + 3 = 0, (3) 
at     an 

where c is the outgoing wave celerity; c) two nonlinear conditions 
(dynamic  and kinematic) for the free-surface: 

36        I        2 
—  + -IV<>I    +   gn = 0; z = n (4) 

an    a<i> dr\    a<i>    „ ... 
—1 + — —'- - — = 0; z = n (5) 
3t      3x 3x     3z 

where n is the surface elevation. 
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2nd  order free  surface equations 

In  order to  avoid  problems  and  costs  caused  by  a  moving 
boundary  on  the numerical  model,  a Taylor  series  expansion  of 
both  dynamic  and  kinematic  conditions  is  made  about  the  level 
z=0. 

s     w     «    N        d<Kx,0,t)        2 32<|>(x,0,t)     ~,  3s ,,, 
4> (x, r\, t) = (j) (x, 0, t) + ri   vv ' 'J+ T]1    ^ '       +0(V) (6) 

dz 3zz 

The following expressions result for the free-surface 
conditions, considering only the two first terms of the Taylor 
series: 

3t     '3z3t    *'   2 Idx)       3x 3x3z   2   3z 
^|fe||-0;z = 0C7) 

3z3z2 

3ri    3<)> 3n       3 d> drj   36     3d)   _ . 
—1+ ——i + ri—-—l--^-T|—x = 0;      z = 0 (8) 
3t     3x 3x      3x3z 3x   3z     3z2 

In    order    to    assess    the    importance    of    each    term, 
dimensionless   variables   are  introduced   as  follows: 

AL 
§ = -j- <t>' ;   x = Lx' ;   z = hz' ;   t = Tt' ; r\ = Ar\' 

The typical scales used are: A - wave amplitude; L - wave length; 
T - wave period; h - depth. Using also parameters e=A/h and 
5=h/L (dropping primes) expressions  (7) and (8) result in: 

ty d%    T2 _      s 1 (d$f     2,    d<t>    32<t>      e 1   (d<j?\2 

+ ^^0 (9) 
8    3z 3z2 

3t       ' 3z3t 

*1 + e8 ^*i + ^lL M _ 1 3$ _e    ^Q 
3t 3x3x 3x3z  3x    8 3z   8    3z2 

Neglecting terms of 0(e2), 0(e2/8) or larger and getting back 
to  dimensional  form,  the free-surface conditions  read: 
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3<l> 1 2 32<J> 
- Dynamic -   =   - gr,    -    -IV*I     -    r, — (11) 

9 
„. . dr\ d<$>        dty dr\ d <)> 

- Kinematic —   =    —   -   — —-   +   n —~ (12) 
dt dz        3x 3x dz 

These equations are both valid at level z = 0 which allows 
the upper boundary in the numerical model to be constant in 
time. The last two terms of (11) and (12) account for the most 
important nonlinear effects while the others represent the linear 
ones. 

Boundary  Integral  Element  Method 

The Laplace's equation with prescribed Dirichlet, Neumann, 
Robin and mixed boundary conditions is an elliptic problem 
which can be suitably solved by the BIEM. Our problem for the 
velocity potential is an hyperbolic one which includes variable 
time. Thus, we can use that method for the spatial discretization 
and let the time dependency be handled by a finite difference 
stepping scheme. A direct boundary element formulation, based 
upon Green's second identity, relates potential and normal 
velocity at the boundary. This way, the discretization involves 
only the boundary. For each element, x, z, <)>, 3<)>/3n and n are 
piecewise linearly interpolated using their nodal values. 
Boundary conditions and unknowns can then be manipulated to 
form a system of equations. Having done this, one obtains an 
approximate solution that is equally accurate on both potential 
and normal velocity. The computation, upon request, of the 
potential and the velocity vector at interior points is explicit. 

Time  Marching  Procedure 

The free-surface equations for the second order model 
include linear terms, which are integrated by a trapezoidal rule 
(implicit), plus second order terms for which Adams predictor- 
corrector formulas are adequate. The blended predictor formulae 
are as follows: 

Dynamic -J-(<|>i+1 -<(,*)   =  - J(ni+1 + r\{)  +  D<i,M)        (13) 
At I r 
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Kinematic — {i\i+l-j)   =   ~ (<+1+ «£)   +   ^'^ (14> 
At 2    *        £ r 

Here Dp and Kp represent differences from linear equations and 

can be predicted as: 

<•'"" - \ («- *oM -1(* • •!)' * \ (iM*i' - 311*,'.) 

The corrector step makes use of the formulas: 

Dynamic -±- (<|>i+1 - c))1)    =    - \ (ni+1 + ty*)  +  D„i+U)       (15) 
At 2 c 

Kinematic — (ni+1 - n1)   =   hCl+<£)  + K<i+U) (16) 
At 2    L        A *- 

where Dp and K„ are given by: 

TV 0+1.0       l/A2,A2\i+1    * /V . ^Tv1   l /V+Ui+l .^U^ 

v0+1.0        1 /  x i+l„i+l   ,   A i „ i   .   A.   i+l„i+l   .  A > ,, i\ 
*€ "V^x^x      + <Mx + *xx   ^        +*xxTl   )• 

The numerical computation of the derivatives is omitted for 
brevity, beeing the vertical acceleration (<t>zt) the most unstable. A 
linear relation between § and dfy/dn is sought with these formulae 
and it is accomplished by substitution of ni+1 in (13) with the 
corresponding expression taken from (14). The same is done for 
the correction procedure. Due to their linearity, other boundary 
conditions  are of straightforward discretization in time. 

Test Case 1 

This first example aims to test the model with solitary 
waves propagating over a constant depth channel. Amplitudes 
were made to vary from 0.1 to 0.4 times the depth. From figure 1 
an amplitude decay can be observed near the generation region 
and  becoming  less  apparent  as  the  wave  moves  rightwards.  For 
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Figure    2.    Comparison    between    numerical    and    Boussinesq's 
solitary wave profiles: a) A/h - 0.1 ; b) A/h =0.4 
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higher amplitudes this decay is more pronounced. Also a 
dispersive tail can be seen as the wave propagates. In figures 2a 
and 2b comparisons are made between the numerical profiles 
and the analytical solution of Boussinesq. These numerical 
profiles where taken when the wave reached the right end of the 
channel and had already an almost constant amplitude. The 
agreement seems good. Computations of celerity and of the 
volume under the solitary waves are also compared with their 
corresponding analytical values available from Boussinesq's 
theory (figure 3). Again both numerical and analytical values 
agree well and even the different trend that can be identified in 
the numerical results of celerity is also present on some 
experimental results (Goring, 1978). The CPU time needed for 
each run (1000 time steps and 620 nodes) was about 6m30s on a 
CONVEX C220. 

Test Case 2 

A solitary wave propagating over a step is tested and 
results are compared with experiments by (Goring, 1978). In 
figure 4 time series of surface elevation at several points are 
displayed along with some experimental values. The effects of 
viscosity and bottom and wall shear, present when a real wave 
propagates on a channel, tend to decrease the amplitude of the 
wave. Since those effects are not accounted for on the numerical 
model, differences found both in amplitude and phase should be 
expected. The second wave on gauge 1 is the one reflected from 
the step which, after reflecting again on the generation plate, 
appears once more on that same gauge. This second reflection on 
the generator is not present on the experimental results maybe 
because that wavemaker had a nonreflecting surface. After 
passing over the step, the solitary wave evolves into three 
solitary waves. On gauge 5 those three waves, going to and 
coming from the right wall, can be very distinctly observed. 
Figure 5 shows the free-surface numerical profile when the first 
and second waves are almost completely formed. They are 
compared with two analytical Boussinesq's profiles of equal 
amplitudes. The CPU time needed for this example (3500 time 
steps and 683 nodes) was 22 min on a CONVEX C 220. 
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Test Case 3 

The shoaling of random waves is a problem of current 
interest and it is addressed here in the perspective of comparing 
experimental and field results with numerical BIEM results. A 
limitation of this numerical model is that it cannot include 
breaking effects on shoaling studies. As this is a second order 
model, propagating waves of two individual frequencies, say fj 
and fj, would produce waves of frequency fj+fj and f;-fj. For a 
continuous spectrum, energy is tranferred to lower and higher 
harmonics of the peak frequency; see for example (Mansard et 
al.,1988). 

Three random wave cases were simulated with three 
different significant wave heights (5.0, 8.0 and 8.5 cm) each 
corresponding to a Bretschneider spectrum with 0.6 Hz peak 
frequency. The effects of shoaling, on a 1/20 slope, upon spectral 
shape, groupiness factor, shape factor of Weibull Distribution and 
skewness of water surface variation are investigated and 
compared, when it was possible, with experiments from (Mase, 
1989). Although Mase's experiments were made by taking 
several samples from a spectrum (Pierson-Moskowitz with peak 
frequency of 0.6 Hz) but with different groupiness factors, the 3 
numerically generated samples of random waves used in this 
study had 3 different spectra for each one and no imposed 
groupiness   factor. 

+- •10.0- + 52 -1-1.6-H- 

Figure  6. Numerical flume (dimensions in meters) 

The "numerical flume" in figure 6, had the generation 
region at 45cm depth, and a slope of 1/20 until 19 cm depth. At 
the right end of the channel a radiation boundary is used. The 
referred experiments of (Mase, 1989) also include the breaking 
region.  Records  of surface elevation were  stored for 50 nodes  of 
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the free-surface during 250 sec, containing about 170 waves, 
and for each one a time and frequency analysis was done. The 
spectra in fig. 7 are: the one imposed, with a significant wave 
height of 8.5 cm and source of the random wave sample, and the 
other three result from the frequency analysis at 45cm (toe of 
the slope), 23.5cm and 19 cm depth. Sub and superharmonics 
appear very clearly for decreasing depths in fig. 7. This energy 
transfer inside the spectrum, a nonlinear effect, is present when 
waves reach  shallow water. 
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Figure 7.  Spectra resulting  from numerical BIEM data frequency 
analysis   at  several   depths   and   source   spectrum   of  the  random 
waves introduced at the left end of the channel 

The  most  important parameters  computed  were: 
- The groupiness factor (GF) calculated from SIWEH (Funke and 
Mansard,   1979); 
- The shape factor of the one parameter Weibull Distribution (m) 
(Cohen,  1965);   

- The skewness of water surface variation Oypi ); 
- The spectral width parameter Qp defined by (Goda, 1970). 
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In fig. 8 the variation of Qp along the slope can be seen and, 
though no comparison is made with other results, the trend 
seams to be correct according to data from (Thompson and 
Vincent, 1985). In fig. 9 the variation of the groupiness factor 
and the skewness along the slope is shown. When compared with 
results from (Mase, 1989) it can be seen that for similar tests 
similar values and trends are encountered. A correlation between 
the groupiness factor and the shape factor of Weibull Distribution 
proposed by (Mase, 1989) is presented in fig. 10 with some of 
the numerical results. These seem to fit quite well in the 95% 
confidence interval. 
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Figure 8. Spectral Width Parameter along the  1/20 slope 

Conclusions 

A 2nd order BIEM model to propagate waves in 
intermediate and shallow water was presented. The tests made 
with solitary and irregular waves showed that it can handle quite 
well nonlinear waves up to, at least, 0.4 of relative wave height. 
Although it cannot include breaking effects, studies of irregular 
wave propagation are possible within a moderate range of 
relative   wave   heights   (this   limit   would   be   about   0.5Hmo/h 
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Figure   10.   Relationship   between   Groupiness   Factor   and   Shape 
Factor of Weibull Distribution 

although it was not thoroughly studied). In that range of relative 
wave heights it is possible to compute pressure inside the 2D 
domain which allows also to evaluate forces acting on submerged 
bodies. Depending on the size of the discretization, this model is 
about 10 times faster than a fully nonlinear BIEM model. The 
ideas presented here can be extended to three-dimensional 
problems as more computer power becomes available. 
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