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NON-LINEAR RANDOM WAVES 

Gert Klopman 1 and Peter Jan Van Leeuwen 2 

Abstract 

For the laboratory study of many random-wave induced phenomena, wave-board con- 
trol signals according to linear wave theory are not sufficient: apart from bound sub- 
and superharmonic waves, spurious free waves are generated. Wave generation accord- 
ing to a higher-order wave theory is necessary in order to suppress these spurious waves. 
The perturbation method of multiple scales is used to derive formulas for the second- 
order wave-board control signal, assuming the carrier-wave spectrum is narrow banded. 
The resulting algorithm is much faster than the one based on the full second-order the- 
ory. Furthermore, the applicability of the narrow-band approximation is indicated for 
carrier-wave spectra frequently used in coastal and ocean engineering. 

1     Introduction 

For the extrapolation of laboratory data to full scale sea conditions it is essential 
to have a realistic reproduction of the sea in laboratory experiments. In a natural 
wave train, with the spectral energy density concentrated around the peak fre- 
quency, the non-linearity of the free-surface boundary conditions introduces sub- 
and superharmonics which are phase locked to the primary wave components. 
When the system under investigation is perceptive to these sub- and superhar- 
monics, it is important to reproduce them correctly in the laboratory. 

The subharmonics (or bound long waves) can generate the forcing for long- 
period harbour oscillations, slow-drift motions of moored vessels and tension- 
leg platforms, and offshore sand-bar formation due to sediment transport. The 
superharmonics introduce sharper-peaked wave crests and flatter troughs, they 
are important for sediment transport due to wave asymmetry and can be of 
importance for forces on offshore structures. 
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An incorrect (linear) reproduction in the laboratory generates free waves at 
the same frequencies as the bound sub- and superharmonics, but travelling at a 
different speed. This difference in speed between the free and bound wave com- 
ponents results in spatial variations in the root-mean-square (rms) free-surface 
fluctuations, for instance obscuring the interpretation of the results from models 
with a movable bed. 

The problem of reproducing the subharmonics correctly up to second order, 
for long-crested random waves in the laboratory, has been solved for translating 
wave boards by Sand (1982), and for translating and rotating wave boards by 
Barthel et al (1983). The reproduction of superharmonics is dealt with by Sand 
k, Mansard (1986), both for translating and rotating wave boards. 

Both the sub- and the superharmonic second-order corrections to the wave- 
board control signal are determined at every frequency by computing an inte- 
gral over an appropriate frequency range (involving the Fourier transform of the 
first-order free-surface elevation and a second-order transfer function). The work 
needed for generating a control signal correct up to second order is thus propor- 
tional to the square of the work needed for generating the first-order signal. 

Since most engineering applications deal with sea conditions characterized by 
quite narrow-banded spectra, the perturbation method of multiple scales is an 
alternative to generate second-order long-crested random waves in the laboratory. 
All operations to compute the second-order control signal from the first-order 
free-surface elevation can be performed in the time domain, and involve only a 
few simple algebraic operations on the first-order free-surface signal. Therefore, 
the work needed for generating the second-order control signal is proportional to 
and only slightly more than the work for generating the first-order signal. 

The application of the perturbation method of multiple scales for the present 
random-wave generation problem, is very similar to the use of the same method 
by Agnon & Mei (1985) and Agnon, Choi & Mei (1988) for determining the 
slow-drift motion of two-dimensional bodies in beam seas. 

In this paper we first consider some aspects of the usefulness of the narrow- 
band approximation, for coastal and ocean engineering applications. Next, the 
perturbation method of multiple scales is applied to the present problem of gen- 
erating second-order wave-board control signals. Here, we only present results 
for the subharmonic bound-wave corrections, and not for the superharmonics. 

2     Applicability of narrow-band approximation 

The accuracy of the multiple-scales method increases as the spectral width de- 
creases. The errors, introduced by the use of the narrow-band approximation 
in the multiple-scales approach, should be small for the wave spectra normally 
used in coastal and ocean engineering. In order to get some indication of the 
usefulness of the multiple-scales perturbation-series method, some comparisons 
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were made between second-order free-surface elevation spectral densities obtained 
with the multiple-scales perturbation-series method, as described by Mei (1989, 
Chapter 12), and those obtained by a full second-order theory, as described by 
Laing (1986). This comparison only gives an indication of the accuracy, since a 
non-linear random process is not fully characterized by its autospectrum. 

Here, we consider gravity waves on the free surface of a fluid domain of ini- 
tially constant depth h. The fluid is assumed to be homogeneous, inviscid and 
incompressible, and the flow is assumed to be irrotational. Surface tension ef- 
fects and effects of the air above the free surface are neglected. The flow can be 
described by a velocity potential $, with the fluid velocity vector equal to the 
gradient of the velocity potential. 

The perturbation method of multiple scales was used to simulate a finite 
duration realization of the second-order free-surface elevation in the time domain. 
The free-surface elevation ((x, i) and the velocity potential $(», z, t) are expanded 
into perturbation series: 

oo 

C   =   E *"<»(*>*), 
n^ (1) 

$   =   E^fc.M), 
n=l 

with x the horizontal space coordinate, positive in the wave propagation direc- 
tion, z the vertical space coordinate, with z > 0 above the still water elevation. 
The time coordinate is denoted by t and e is a small non-linearity parameter 
proportional to the wave slope. 

Because we are considering propagating wave phenomena, the terms from the 
perturbation series are expanded into harmonic functions. The amplitudes of the 
harmonic functions are assumed to vary only slowly in space and time, i.e. the 
carrier waves are assumed to have narrow-banded spectra. This slow modulation 
is formalized by the introduction of fast coordinates (x0, to) and a cascade of slow 
coordinates (xi, t-y), (x2,t2), ... in the horizontal space and the time direction: 

2 
3-0      =      %•> 2-1      =      £%•> X2      ~      £  X2-) • • • , /cy\ 

tg    =   t, t\    =   et, t2    
=   e ^2,..., 

where it has been assumed that the modulation effects are of the same order as 
the non-linearity effects. 

The (quadratic) non-linearity of the problem, due to the non-linear free- 
surface boundary conditions, introduces higher harmonics into the higher-order 
solutions: 

oo +n 

n=l        rn=—n /o^i 
oo +n \°) 

$  =  Ee" E 4>{n'm)K, 
n=l        m=—n 



with: 
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E0 = e'xo, xo = faxo - u0t0, (4) 

C(»,»)    =   C(».•)(a!lja:3j...;tl>ta,...), 

expressing the slow variation of these complex-valued amplitude functions ((n'm) 
and <j>(n'm>. In (4), A;0 is the carrier wave number and w0 is the carrier-wave angular 
frequency. Because ( and $ are real-valued functions, ((n~m'> and <^(n'~m) have 
to be the complex conjugates of respectively £(n'm' and <j>(n'm\ 

The solution of both the first-order and the second-order problem can for 
instance be found in Mei (1989, Chapter 12): 

<• - k* 2 , i 

2 U!0 ch q v ' 

(6) 

and 

lcty^°> 
5   3ti        4 </ sh2 9 

k0 chq 

6   =    -^-7^:lf  + 

+ ^(2ch2* + 1)(^°+*)> 
,(2,o) _ igchg n    <?thg-QthQ\ /aA <xo 

2a;0chg ^w0 k0 Cg ) \dtx 

(7) 

3 to0 ch 2Q 

16    sh4g 
(c A2e2ix° + *) , 

with q — koh, Q = k0(z + h), Cg — dw0/dko the group velocity, g the gravitational 
acceleration, A(x\, t\) the complex-valued amplitude of the carrier waves and an 
asterisk (*) denoting the complex conjugate of the preceding term. We have 
chosen £(2,1) equal to zero, i.e. the first-order solution d completely describes the 
free-surface elevation spectral density near the peak frequency. The wave number 
k0 is related to the angular frequency o>0 by the linear theory dispersion relation: 

LOI gk0thq, (8) 

and further use has been made of 
dA       „   dA 

which is correct up to second order. 
The second-order correction (7) to the free surface elevation ( still contains 

^U.o). This is determined from the solvability condition for the third-order zeroth- 
harmonic (n,m) = (3,0) problem, see e.g. Mei (1989, Chapter 12), and assuming 
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that the waves propagate according to Stokes's second definition of wave celerity 
(i.e. the mean mass flux through a vertical plane perpendicular to the wave 
propagation direction is equal to zero), resulting in < ( >= 0, with < • > 
denoting a time average. The second-order correction (2 becomes: 

C   =   l     9     lc> 
" 2Cj-gh\c{ 

k0 ch<7 
^s4}^|2-<|A|2>)+ 

+^(2ch2<+i)(^°+*). 
(10) 

8sh3q 

with Co = W0/&0 the phase velocity. 
Equations (6) & (10) are used to simulate part of a realization of the second- 

order random free-surface elevation. The first-order complex-valued random wave 
signal A exp(ixo) is generated from a given first-order free-surface elevation spec- 
trum with the random-amplitude/random-phase method (Tucker et al.; 1984). 

The second-order free-surface spectrum can be computed without making the 
narrow-band approximation with the formulations of Laing (1984). The (one- 
sided) non-linear free-surface elevation spectrum S(^(ui) is expanded into a per- 
turbation series: 

00 

s«M = £ £ns«{n)H, (11) 
n=l 

of which we consider only the first two terms.  For a given first-order spectrum 
S((^'(u)), the second-order correction S(f2\w) becomes: 

S((WH = /     £>2o(w, a/) %(1 V) %(1 V - w) do;', (12) 

with Z)2o(^)^') the second-order transfer function, given by: 

D20 =       2CM«."'»a    „ (13) 
g2 (1 — u>2/gKthK.h) 

D2 
1-{{J)2 + {w-Jf + «>-w') + 
— u' (u — w') coth k'h coth(«; — k')h + 

— uju}1 coth nh cothk'h -f 

— u (w — u') coth K\I coth(/« — k')h } , 

with K the wave number of the bound waves, and: 

(u/)2 =   gk'thk'h, 

(w-w')2    =   g(n-k')th (K-k')h, 

(14) 

(15) 
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the dispersion relationships for the free waves. Equation (12) shows that an 
integral over all frequency pairs has to be computed, in order to obtain the 
second-order spectrum. 

Both descriptions of the second-order free surface elevation, i.e. the multiple- 
scales perturbation method as well as the full second-order theory in the fre- 
quency domain, include the subharmonic as well as superharmonic bound waves. 
Both methods were used to obtain second order spectra, assuming the first-order 
spectrum to be of JONSWAP shape: 

exp .11 
4\/P 

Y   2 V °h ) (16) 

with / = W/(2TT) the frequency, Hrma the rms wave height, fp the spectral peak 
frequency, 7 the peak enhancement factor, a the peak width parameter and /? a 
form factor chosen in such a way that H^ms = 8 /0°° S^l\f) df. 

The results of three simulations will be shown, all with a rms wave height 
Hrms = 0.7062[m], a peak frequency fp = Q.25[Hz], a still water depth h = 3[m], 
and with the mean JONSWAP values for a, i.e. a — 0.07 for f < fp and 
a = 0.09 for />/p. The simulation with the multiple-scales perturbation method 
in the time domain had a duration of 6400[s] and a sample rate of 5.12[ife]. The 
following three values for the peak enhancement factor 7 were used: 

7 = 20, a very narrow-banded first-order spectrum, 

7 = 3.3, the mean JONSWAP value, and 

7 = 1, the Pierson-Moskowitz spectrum. 

Figures 1-3 show a comparison between the autospectra of the free-surface ele- 
vation, obtained from the multiple-scales perturbation method and from the full 
second-order theory. The relative differences between both approaches become 
larger when the spectral width increases, and are of the order of 10% of the 
square root of the spectral density (a measure for corresponding wave amplitude) 
near / = 0.02[/fe], where the subharmonic spectral density is high. It should 
also be noted that the relative importance of the bound long waves decreases as 
the spectral width increases. The difference between the spectrum obtained from 
the multiple-scales perturbation-series simulation and the theoretical first-order 
spectrum is due to the random-amplitude approach during the generation of the 
first-order signal and the finite duration of the numerical simulation (therefore 
also Hrms, obtained from finite-duration realizations, is a random variable). Since 
the mean free-surface elevation is equal to zero, the spectral density falls of near 
/ = 0[Hz] for the spectra obtained from the numerical simulation, but is not 
exactly equal to zero due to the computational method used for obtaining the 
spectra (Fast Fourier Transform on half-overlapping segments, with Van Hann 
data window). 
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The deviations, due to the narrow-band approximations implied by the use 
of the multiple-scales perturbation-series method, were considered to be very 
acceptable for the spectra commonly used in coastal and ocean engineering. 

3     Second-order random-wave generation method 

The generation of subharmonic waves, both bound and free waves, is described 
by Agnon & Mei (1985) in their study of the small-amplitude slow-drift motion 
due to beam seas of a two-dimensional rectangular block, sliding over the sea 
bed. Agnon, Choi fe Mei (1988) extended this analysis to the case of floating 
two-dimensional cylinders undergoing both small- and large-amplitude slow-drift 
motions ('large' meaning motions comparable to or even greater than the motions 
at the carrier-wave frequency). Here, we use the results of Agnon & Mei (1985) 
for the determination of the low-frequency wave-board control signal, in such a 
way that only bound long waves are generated, and no spurious free long waves. 

The horizontal wave-board position is denoted by X(t), and the still position 
is at x = X = 0. As in (1), the free-surface elevation ((x,t), the velocity 
potential <f>{x, z, t), and now also the wave-board position X{t) are expanded into 
perturbation series: 

oo 

C   =  EeBC»0M), 
n-1 

oo 

$    =   £e*V»(*,M), (17) 
oo 

X   =   ^enXn(t). 
71=1 

The terms in the perturbation series are again expanded into harmonic functions, 
as in (3). We introduce a cascade of slow variables, cfm. (2). However, now the 
amplitudes of the harmonic functions vary fast in space near the wave board due 
to the presence of evanescent modes. Therefore, the solution is assumed to be of 
the following form: 

OO +71 
/•        _     V"* en    V~*    An,m)     -imwoh 

(18) 

with: 

n=l        m=—n 
oo             +n 

$  = _     y^ -n    y^   ^(n'm) e-*'•wo<o 

n~l        m=—n 
oo             +n 

X   -- _      \ ^ _n    \ ^     v{n,m)    -imwo<o 

n=l        m~—n 

£(»,m)     =   C{n'mHx0,x1,x2,...;tuti,...), 
^(»,m)      =     ^»)(Io,Illl2)...;«;t1,t,1...)) (19) 

X(n,m)     =     X^'m\tut2,...), 
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i.e. the harmonic functions ((n-m) and ^<n'm) are also functions of x0, and it 
is not assumed that the first-order solution only contains propagating waves 
A exp [ i (koX0 — wo<o)], but also evanescent modes fixed to the wave board. 

The derivation of the first-order solution and the second-order subharmonic 
solution can be found in Agnon k. Mei (1985), including how to remove the 
evanescent mode contributions from the subharmonic solution. These derivations 
will not be repeated here, but we only present the results for our problem of 
second-order wave-board control. The first-order first-harmonic solution is: 

C(i,i)     =IA(a;i_C3i1)e
,^ + 

••~^K<.)Ej   •-      l     -  --*,"° Co     2     V       al> tiklC9-\{ql+q})l{kDh) 

^(i,D     =_i^oli4(a.1_Ctl)c^«.+ (20) 
w0chg0 2 

C0   2    {     3l) t k< •s1>  Cg - \{ql + qf)/(kDh) 

X•   =*cho\A{-C^ 
with ko = ^>o/g, qi = hh,  I = 0,1,2,... and Qt = kt(z + h),  I = 0,1,2,  
The propagating wave number k0 and the evanescent-mode wave numbers ki, for 
/ = 1,2,... satisfy the linear-theory dispersion relationships: 

gk0thq0     ,7 = 0, 
gk[ tan qi   ,/ = 1,2, 

(21) 

The first-order zeroth-harmonic solution is: 

Cd,o)     =   0> 

vd,o)   = <?2     (2co0k0 + Ca(kl-kD
2)      2u0k0\ (22) 

4^Cg\ Cj-gh +    gh   ) 

x f_y (|^)|2 - < |A|2 >) #, 
where X'1'0' is the desired subharmonic bound-wave contribution to the wave- 
board control signal X. Note that ^i^1'0' and X^'0"1 are proportional to |A|2, and 
thus in fact higher-order quantities. This is due to the fact that their derivatives 
dft1'0'Idxi and dX1-1,0' jdt\ are the relevant physical quantities which are second- 
order quantities within the multiple-scales perturbation-series approach. 
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From the second-order zeroth-harmonic contribution to the solution, only the 
£(2,0'-term is needed: 

C(2,0) = _I | 3^1,1) 2 

dx0 

kD
2\^ (23) 

In summary, C'1'1', 4^"^ and X^1,r> in (20) are the terms proportional to the wave 
amplitude A, and (t2'0), ft1® and X^'°1 in (22) & (23) are the subharmonic terms 
proportional to \A\2. 

The first-order random free-surface signal A exp(—iCgti) is generated with 
the random-amplitude/random-phase method (Tucker et al.; 1984), for a given 
first-order free-surface elevation spectrum, as in Section 2. Next the wave-board 
control signal, correct up to second order, is computed. Required time integra- 
tions are performed with the modified midpoint rule, and time differentiation with 
central finite differences, both of second-order accuracy, i.e 0(At2). Also deter- 
ministic waves, such as monochromatic and bichromatic waves, can be generated 
correctly up to second order with these equations. 

At the moment, flume tests are performed at Delft University of Technology, 
for the experimental verification of the second-order wave-board control system. 

4    Concluding remarks 

The perturbation-series method of multiple scales has been used to derive an 
efficient method for the generation of second-order random waves in wave flumes 
with a translating wave board. The method is presented in detail for the subhar- 
monic corrections to the wave-board control signal, but can easily be extended 
to include the superharmonic corrections. 

The amount of work to generate the second-order corrections with the proposed 
method is proportional to the amount of work to generate the first-order signal. 
In previously used second-order frequency-domain methods, this amount of work 
was proportional to the square of the effort for generating the first-order signal. 

Furthermore, the narrow-band approximation, implied by the use of the multiple- 
scales perturbation-series approach, seems to be very acceptable for the first-order 
spectral shapes most frequently used in coastal and ocean engineering problems. 
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f   [Hz]- 

FIGURE 1. Second-order spectral energy density of free-surface elevations (7 = 20), 
 multiple-scales perturbation-series simulation (Mei; 1989), full second- 
order theory (Laing; 1986). 
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FIGURE 2.   Second-order spectral energy density of free-surface elevations (7 = 3.3; 
mean JONSWAP spectrum), multiple-scales perturbation-series simulation (Mei; 
1989), full second-order theory (Laing; 1986). 

f  [Hz]- 

FIGURE 3.   Second-order spectral energy density of free-surface elevations (7 =  1; 
Pierson-Moskowitz spectrum), multiple-scales perturbation-series simulation 
(Mei; 1989), full second-order theory (Laing; 1986). 




