
CHAPTER 23 

EXTENSION  OF  MILD  SLOPE  EQUATION  FOR WAVES  PROPAGATING 
OVER  A  PERMEABLE SUBMERGED  BREAKWATER 

Takashi Izumiya 

ABSTRACT 

A wave equation is presented for predicting reflected and 
transmitted waves for a permeable submerged breakwater. This equation 
includes the mild slope equation derived by Berkhoff(1972), which is a 
vertically integrated refraction-diffraction equation. Therefore, the 
equation derived can also predict the combined effects of refraction 
and diffraction. Numerical calculations with a dissipation term due to 
breaking are performed to obtain reflection and transmission 
coefficients as well as wave height distributions. Through the 
comparisons with the experimental results, the validity of the model 
is confirmed. 

1. INTRODUCTION 

Detached breakwaters and groins have been constructed on the 
coasts of Japan to prevent beach erosion. Recently, defense works 
against beach erosion, which is the combination of submerged 
breakwaters with wide crown width and large groins, has been planned 
on the Niigata west coast. It is very important for coastal engineers 
to estimate an effectiveness of the breakwaters. However, many of us 
are faced with a problem of how to estimate a distribution of wave 
height in the region existing such coastal structures. 

Several analytical approaches have been done to predict the wave 
height of reflected and transmitted waves for permeable breakwaters 
(e.g., Ijima et. al.1971, Sollit and Cross,1972). Analytical solution 
obtained by them are valid only for rectangular permeable structures 
on a uniform bottom. These techniques cannot be applied to structures 
with arbitrary cross-section and require long algebraic operations to 
estimate the values of reflection and transmission coefficients. More 
recently, Sulisz(1985) has developed a numerical technique to predict 
wave reflection and transmission through a rubble mount breakwater of 
arbitrary cross section. The technique is .however, so complicated 
that it cannot be applied in the three dimensional problem. Therefore, 
a simple calculation method for wave transformation is required for 
coastal engineers. 

Berkhoff(1972) has derived the mild slope equation which is a 
vertically integrated refraction-diffraction equation and is easy to 
be applied for a three dimensional problem. It should be noted that 
the mild slope equation can be applicable to waves propagating over 
bottom slopes as steep as 1/3 and even to waves propagating across a 
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step(Booij,1983). In this paper, a theoretical approach utilizes the 
linearized equation of motion in a permeable structure. A wave 
equation is derived by vertically integrating the equation of motion. 
The derivation of the wave equation is based on the assumptions 
that the slope of the permeable structure is adequately gentle, and 
that evanescent wave components of larger decay rate are negligible. 
The wave equation derived under the above assumptions is a two- 
dimensional elliptic type equation and includes the mild slope 
equation by Berkhoff. 

2. DERIVATION OF EXTENDED MILD SLOPE EQUATION 

2.1 Wave transformation within a porous medium 

The  analytical approach  in this  study begins with unsteady 
equations  of  motion for flow in a porous medium.  After  Madsen  and 
White (1975),  the  linearized  equations 
porous medium are expressed as: 

du       dv       dw 

of mass and momentum  in 

dx dz 
=0 

du I dp a -/- -u nr p dx T 
dv i dv a —f- 'V 

~W p Sy I 

dw l dv a —f- -w- -9 ~dF p dz I 

(1) 

(2) 

(3) 

(4) 

where (u,v,w) is the average discharge velocity components in the 
direction of x-, y- and z-axis, respectively. These are conceptual 
quantities which are averaged over finite and total volumes. The 
quantity v is the pressure averaged over finite pore volumes, I is 
the porosity of the porous medium, f is the linearized friction 
factor, and r is a inertia coefficient and expressed in terms of a 
virtual mass coefficient Cm   as: 

r=l + s(l-A) =X+CM(1-X) (5) 

Hence, we assume that the flow in a porous medium is 
irrotational. Then the velocity potential ip for virtual discharge 
velocity is defined as: 

Substituting  Eq.(6) 
integrating yields: 

T 

(u,v,w) = P<p 

into the momentum equations 

V 
x -VL+-^-+vz+f—j-'P=c(f) 

(6) 

(2)-(4)   and 

(7) 

where C(t) is a integration constant. Equation (7) is the linearized 
unsteady Bernoulli equation. In order to remove the integration 
constant C(t), we introduce a new velocity potential defined by 

t'  r X   I"'   /*  1 
(8) 

For simplicity, the prime will be omitted hereafter. The 
imcompresslble equations of motion can be expressed in terms of the 
velocity potential defined in Eq.(8) 

"H-£=o 
-pH -ffz+/-y-p = 0 

(9) 

(10) 

where Sf    is the gradient operator in the horizontal plane.  The set of 
equations (9) and (10) govern the flow within a porous medium,  should 
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be  solved under appropriate boundary conditions.  Boundaries of the 
domain  are the bottom at a depth z=-h and a free surface,  z = C . The 
dynamic free surface condition is obtained by setting P=0 at z=£ in 
the above linearized Bernoulli equation. 

-y-¥>t +gZ+f~<p=0 :  2=0 (11) 

where 9 and its derivative with respective to t are evaluated at the 
still water level z = 0. The linearized kinematic boundary condition at 
a free surface and a bottom are expressed by 

<p, = Ki  •  z=0 (12) 

ip,= -Vtp?h    : z=-h (13) 

Our task is to seek a solution to the Laplace equation (9) which 
satisfies the above boundary conditions Eqs.(ll) to (13). 

It is assumed that a velocity potential <p   Is expressed by: 

cp=$<ri°'-=f{z)-q{x,y)<riM (14) 

In case of constant water depth or very gentle slope. substitution of 
Eq.(14) into Eq.(9) yields 

f=Acoshk{h+z) (15) 

where k is the complex wave number satisfying a dispersion relation 
which will be described just later. Elimination of C in Eqs.(ll) and 
(12) and substitution of Eq.(14) together with Eq.(15) into the 
boundary condition gives a dispersion relation as follows: 

o2(r+if)=gktanhkh (!6) 

Equation (16) has a countable infinite number of complex root. Since 
evanescent wave components may decrease their magnitudes rapidly, we 
will neglect them. If r=1 and f=0, then we obtain the dispersion 
relation for linear free surface waves. In order to obtain a wave 
equation for the mild bottom slope, we apply the following Green's 
identity (see, Mei,1983). 

0 (yy:(TO-*"i£(*"•))<** =[A(z)<rm-nvdJ_h {17) 

where L is the self-adjoint differential operator which is expressed 
as 

*HH>-£]+*w 
(18) 

Applying Green's formula for <f    and f and integrating from the  bottom 
to the still water level yields 

r(C*C*fv) +k2C*C*„v=0 (19) 

where 

C*C*g=-f-tanh kh-~ f 1 + . 2,kl*., 
k 2 (   sinh 2 kh . (20) 

Equation (19) is the same in the expression as the mild slope 
equation derived by Berkhoff(1972). However, it is different that the 
wave number k in Eq.(19) is a complex number. If we put r=l and f=0, 
Eg. (19) reduces to the mild slope equation by Berkhoff. In case of 
constant water depth, Eq.(19) reduces to the Helmholtz equation which 
has a solution with an exponential decay in the direction of incident 
wave propagation. 
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2.2 Wave transformation over a permeable submerged breakwater 

Let  us  consider  the wave  transformation over  a  submerged 
permeable breakwater as shown in Fig.l. In this figure, h is the still 

Fig. 1 Definition sketch. 

water depth, and hs is the depth above the interface of a submerged 
breakwater. The domain is divided into two regions, i.e., regions 
outside and inside the submerged breakwater, denoted as Region I and 
Region II, respectively. Irrotationality for the flow in pore of the 
breakwater permits to define the velocity potential <p    in Region II. 

In  Region I,  governing equation and boundary conditions can  be 
expressed in terms of the velocity potential <p   as: 

<ptt + 9<Pz=0    :  z=0 

V 
«>H— ghs =0 

p 
z= — ns 

<p:s=—l7(fVhs+Ws    • z=—hs 

(21) 

(22) 

(23) 

(24) 

where ws is the average discharge velocity at z=-hs. Equation (22) is 
the boundary condition arising from the kinematic and dynamic 
condition at the free surface, and Eq.(23) is the dynamic condition at 
the interface z=-hs. Equation (24) is the modified kinematic condition 
including the discharge at the interface of the permeable bed. 

In  Region II,  governing equation and boundary conditions are as 
follows: 

X p x 

(/is=—Ptpfrhs+ws    •• z=—hs 

<pz=-7^Ph    : z=-h 

(25) 

(26) 

(27) 

(28) 

where Eqs.(26) and (27) are the dynamic and kinematic conditions at 
the interface z=-hs, respectively, Eq.(28) is the kinematic condition 
for an impermeable bed. Since the pressure and the vertical discharge 
velocity  at the interface must be continuos,  the following continuity 
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conditions should be required. 

Vi = Vu        • z = -hs (29) 

**=^   : Z = ~ks (30) 

From Eqs.(23),(26) and (29), we have 

Vt=(*IX)</>t+V<rlZ)</>    : 2=-^s (31) 

The velocity potentials <p   and <p   may be expressed as follows: 

(o= —~Ft{z)n{x, y)*-*»« (32) 

</>=-—Fl(z)<:(x,y)er<* (33) 
a 

Substituting Eqs.(32) and (33) into Eqs.(21) and (25) respectively, 
and invoking the mild slope assumption, we obtain 

Fi(z) = A cosh k (h,+z) +B sinh k {hs+z) (34) 

F2(z)=D cosh k(h+z) (35) 

where A,  B and D are integration constants. The free surface boundary 
condition and the continuity condition for mass flux at the the 
interface together with Eqs.(32) to (35) give a dispersion relation by 

tanh khs+q tanh k (h—hs) 
" =ak 1 + ? tanh k (h-hs) tanh kh, (36' 

where q=A/(r + if) . When ,1=1, r=l and f=0, or X <=0, the dispersion 
relation Eq.(36) reduces to that for the linear wave over an 
impermeable bottom. 

Applying Green's formula for Fl and f   , and for F2 and <P , 

r„av a2ft.). , r° L?J S'^.IJ, fc- ty    5F* JI"" , Tr- 
dz dz •v 

and  substituting Eqs.(32) to (35) into Eq.(37),  we get the  extended 
mild slope equation. 

F(afr;)+k2av=0 (38) 

0=-f-tanhAfe-i-|"l+—4vnrl +9-7-tanhft(A-A,)tanh»AA, (39) 
ft        2 L   sin" ^ * s -1    * 

,       6f     tanhft(A-As)   1 T 2 ft (A-A,)     "I     ,   .,   g   ,     ,,,    ^    , ., ,.      ..IT, 2AA,    1 
ft       cosh2 ftAj       2|_      sinh2ft(A—As) J ft 2L      sinh2ftAsJ 

If we put ^=0, or h=hs in Eqs.(38) and (39), Eq.(38) reduces to 
the mild slope equation for an impermeable bed. So the wave equation 
(38) includes the mild slope equation derived by Berkhoff(1972). 
Furthermore, when hs=0, we get a wave equation similar to that for 
wave transformation within a permeable media in previous section, but 
have a dispersion relation slightly different from Eq.(16). 

2.3 Modeling of wave breaking over a submerged  breakwater. 

Wave breaking over a submerged breakwater is very important 
mechanism of wave energy dissipation. The wave equation (38) should be 
modified to include a energy dissipation due to breaking. To do this, 
we  add the energy dissipation term in Eq.(38) to be expressed by 
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V {aPrj) + k'ar) = - iafoV 
(40) 

and  i  is  thP T"T d^sipation factor,  <7 is the angular frequency 
K     i u  hf  imaginary unit.  Since breaking waves  over  a wide 

submerged breakwater may recover,  the value of/* for recovered waves 
must  be  required  to be equal to  zero recovered waves 
Watanabe and Dibajnia(1988) and Isobe et 
following expression for fD • 

Referring 
al(1988) , 

the  studies by 
we will adopt the 

f» 'tanh[^]V-iV; r-Tr 
(41) _ Ts-Tr 

where hs and hs are the water depth above the breakwater crown and the 
local water depth above the interface of the breakwater, respectively 
hs qT'T rT 1Sh

the^atio <>f the wave amplitude to ihe water d^pth 
uniform v , 7 thS ValUeS °f r for breaking waves over a 
uniformly sloping beach and for recovered waves over a step type 
beach   respectively.  The  quantity Sa   is the averaged bottom  slope 

andX  wll ZTiyd T" pol;^1986>-  The Proportionality constant and PD       will  be determined from the results of 
transformation. experiment on wave 

EXPERIMENTS 
BREAKWATER 

ON  WAVE  TRANSFORMATION OVER  A  PERMEABLE  SUBMERGED 

3.1 Experimental equipments and procedure 

In order to confirm the validity of the model 
the wave transformation over a submerged permeab 
conducted. A uniform slope of 1/15 made of wooden 
In a wave flume, and a submerged breakwater compos 
gravels was placed on the slope. The cross sec 
breakwater is shown In Fig.2. The average weight 
and W3, is 86.3 gf, 10.4 gf and 0.89 gf respect 
porosity of the submerged breakwater Is 0.433. The 
cases were made for various wave heights and per 
water depth of  3 cm. 

the experiments on 
le breakwater were 
board was installed 

ed of three kinds of 
tion of  the model 
of gravels, W1,W2 
Ively.  The  average 
experiments with 24 
lods with  the crown 

unit: cm 

5,-5, 25.0   ,17.0,   34.2     ,12.5,6-8 

Wi»86.3g 

W3 = 0.89g 

W2 = 10.Ag 

Fig. 2 Cross section of model submerged breakwate 

3.2 Wave breaking condition over a submerged breakwater 

A few investigation on wave breaking over a submerged breakwater 
has been made. For this, a large number of experiments were, carried 
out to obtain the empirical formula for the breaking condition In 
case of wave breaking over a submerged breakwater,  the breaking water 
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depth is defined as a depth from the interface of a submerged 
breakwater to the still water level. From the experimental data of 
the breaking water depth KB  •  wave period and the local average  slope 

so , the following expression for the non-dimensional breaking depth is 
obtained. 

hB  01      f       0.184 5a    | / H0 \-°-
37 

-^-=0.43+ _0.77_/o„loWi^ 
+0-22\l- sJ-0.107 s*+0.054\- [  L„ j   <42) 

where Ho is the deepwater wave height and Lo is the deepwater 
wavelength. When the local average slope steeper than 0.1, Sa takes a 
value of 0.1. The relation (42) is obtained to be slightly modified 
from the expression for steep slopes proposed by Isobe et. al(1988). 
Using Eq.(42), we can evaluate the breaking water depth as a function 
of the deepwater steepness and the average bottom slope. 

4. METHOD OF NUMERICAL CALCULATION 

A two-dimensional problem in the vertical plane is analyzed to 
examine the validity of the model equation. Equation (38) is 
discretized into a finite difference form and is solved by using two 
boundary conditions, i.e., the offshore boundary condition and the 
non-reflective boundary condition at a shoreward boundary to be 
expressed by 

ftf+f^iMie""' (43) 

ik(p—<px—0 (44) 

where ki is the wave number at the offshore boundary, Hi is the 
incident wave height and xo is the location of the offshore boundary. 
These boundary conditions are also discretized into finite difference 
schemes. The procedure of numerical calculation is summarized as 
follows: 

1) Solve the dispersion equation, (36), for the first eigen value. 
2) Assume /D=0,  and solve Eq.(38) with  the boundary  conditions 

Eqs.(43) and (44). 
3) Determine the breaking point using the breaking condition Eq.(42). 
4) Calculate the wave heights with Eqs. (40) , (41), (43) and (44). 
5) Calculate  the  difference of wave heights  for  the  successive 

iterations at each location. 
6) Repeat 4) and 5) until the solution converges. 

Through the above procedure, the converged solutions are obtained 
within 7 to 8 iterations. 

5. COMPARISON OF THE MODEL RESULTS AGAINST THE EXPERIMENTAL DATA 

The computed results with Eqs.(38) and (39) are compared with 
the experimental data to examine the applicability and the validity of 
the present model. In the calculation, The values of 0(p, j8p , 7J and f 
are determined by fitting experimental data for wave height. The 
results are aD= 0 . 8 , £r>=90.0, r= 1.1 and f=10.0. Figure 3-(a) to (e) 
show  the  comparison between measured and calculated values  of  wave 

height. The solid lines indicate the wave height distributions 
calculated with the extended mild slope equation (38) including the 
dissipation term due to breaking. The closed circles show the 
experimental data. The agreement of wave heights outside the surf zone 
is very good. This means that the magnitude and the phase of reflected 
waves are well predicted by the present model.  On the other hand, the 
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wave heights measured over a submerged breakwater are fairly smaller 
than the computed results. This is because that since the water depth 
above the breakwater crown, 3 cm, is shallow, the waves collapse on 
the breakwater with the strong nonlinearity of motion. So the 
difference between measured and computed wave heights occurred. 
Nevertheless, the transmitted wave heights calculated from this model 
are In good agreement with the experimental results. 

Hl-i.l? T-I.A7 

HI -2. 0 I T-1.79 

Fig. 3 Wave height transformations. 
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Figure 4 shows the comparison between measured and calculated 
values of reflection coefficient as a function of relative crown width 
B/Lo. It is found that although the computed results in the range 
(0.1 < B/Lo < 0.2) indicate values slightly larger than the 
experimental data, the agreement is fairly good. Figure 5 compares the 
the transmission coefficients with the measured and calculated 
results. From this figure, wa can find that the estimated values of 
the transmission coefficient agree well with the experimental data, 
and also find that the coefficient decreases with decreasing relative 
crown depth hs/Ho. Figure 6 shows the comparison between measured and 
calculated values of energy loss coefficient as a function of the 
relative crown depth hs/Ho. It is seen from the figure that there is a 
scatter in the data in the range of hs/Ho >0.8, however, the agreement 
is fairly good in the range of hs/Ho<0.8. 
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CONCLUDING REMARKS 

A wave equation has been developed to evaluate the important 
characteristics of permeable breakwater. The wave equation obtained is 
applicable in and outside of a permeable structure, and has the 
advantage that the computation time is fairly shorter than those of 
existing- methods. The validity of the model was confirmed through a 
comparison with the experimental data for a two-dimensional case. As 
the result, it was found that the present model can produce accurate 
results for practical purposes for the reflection, transmission and 
dissipation characteristics. 

ACKNOWLEDGMENTS 

This study was financially supported by the Science Research Fund 
of the Ministry of Education, Science and Culture, Japan, and by the 
Kajima Foundation's Research Grant. 

REFERENCES 

1) Derkhoff, J.C.W.(1972): Computation of combined refraction 
diffraction, Proc. 13th Coastal Eng. Conf., ASCE, pp.471-490. 

2) Booij, N.(1983): A note on the accuracy of the mild-slope equation, 
Coastal Eng., Vol. 7, pp.191-203. 

3) Dalrymple, R.A., J.T. Klrby and P.A. Hwang(1984): Wave diffraction 
due to areas of energy dissipation, J. Waterway, Port, Coastal and 
Ocean Eng., ASCE, Vol.110, pp.67-79. 

4) Deguchi, I., T. Sawaragi, and II. Shiratani (1988) : Applicability of 
non-linear Darcy law to the analysis of wave deformation on a 
permeable bed, Proc. 35th Japanese Conf. on Coastal Eng., pp.487- 
491. (in Japanese) 

5) Ijima, T., Y. Eguchi, and A. Kobayashi(1971): Study on permeable 
breakwaters and quays, Proc. 18th Japanese Conf. on Coastal Eng., 
pp.121-130. (in Japanese) 

6) Isobe, M., Y. Shibata, T. Izumiya, and A. Watanabe(1988): Set-up 
due to irregular waves on a reef, Proc. 35th Japanese Conf. on 
Coastal Eng., pp.192-196. (in Japanese) 

7) Izumiya, T. and M. Endo(1989): Wave Reflection and Transmission due 
to a submerged breakwater, Proc. 36th Japanese Conf. on Coastal En 
pp.638-642. (in Japanese) 

8) Kondo, H.(1970): An analytical approach to wave transmission 
through permeable structures, Coastal Eng. in Japan, Vol. 13, 
pp.31-42. 

9) Madsen, O.S. and White S.M.(1975): Reflection and transmission 
characteristics of porous rubble mount breakwaters, Rt. No.207, 
MIT, 183p. 

10) Madsen, O.S.(1974): Wave transmission through porous structures, 
Proc. ASCE, WW3, Vol.100, pp.169-188. 

11) Mei, C.C.(1983): Applied Dynamics of Ocean Surface Waves, John 
Wiley & Sons, New York, pp.86-88. 

12) Sollit, C.W. and R. II. Cross(1972): Wave transmission through 
permeable breakwaters, Proc. 13th Coastal Eng. Conf., ASCE, 
pp.1827-1846. 

13) Sulisz, W.(1985): Wave reflection and transmission at permeable 
breakwaters of arbitrary cross-section, Coastal Eng., Vol.9, 
pp.317-   pp.371-386. 

14) Watanabe, A. and M. Dibajnia(1988): A numerical model of wave 
deformation in surf zone, Proc. 21st Coastal Eng. Conf. ASCE, 
pp.578-587. 




