
CHAPTER 193 

Nearshore Circulations on a Wavy Coast 

Ming-Chung Lin* and Sheng-Yeh Hwang** 

1. Introduction 
Nearshore circulations, produced by wave-induced 

radiation stress gradicents, form different circulation 
patterns under different wave characteristics and 
topographical conditions. Although numerous studies of 
nearshore circulations, such as Bowen (1969), Miller and 
Barcilon (1978), Dalrymple & Lozano (1978) and so on, have 
been appeared in the literature, it seems that little 
attention is paid on the case of a non-straight shoreline. 
O'Rorske & Leblond (1972) have investigated the wave-induced 
longshore currents in a semicircular bay, while Oda (1982) 
has used the coordinate transformation to treat nearshore 
circulations on a circular-arc shaped coast. Lin and Lee 
(1982), introduced a small perturbation quantity of wave 
set-up and set-down, induced by the non-straight shoreline, 
into the mean total water depth to obtain a governing 
partial differential equation by which they investigated the 
nearshore circulations on a cuspate coast. In Lin and Liou 
(1986), a more general equation was deduced on the 
orthogonal curvlinear coordinate system to unify the 
diversities among the related theories, and moreover, to 
investigate the rearshore circulations on the arc-shaped 
coast. 

2. Mathematical formulation 
With the wave field there will be associated a mean 

transport velocity which we will lump together with the 
secondary mean currents that we wish to describe under the 
velocity vector U, assumed horizontal and depth purely 
independent.  The mean momentum density of a water column is 

M = pdO (1) 

where p is the water density and d the total water depth. 
For a steady wave field the mean mass conservation equation 
reduces to 

VM = 0 (2) 

and then the linearized mean momentum equation is expressed 
as (O'Rourke and Leblond, 1972) 
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1   aSij ^     a^   fUi (3) 

pd   8Xi 3Xi   Pd 

where f is the friction coefficient, a function of total 
water depth and wave amplitude; S^j is the radiation stress 
of the waves, g is the acceleration of gravity. In this 
equation, the lateral friction is neglected. Define 

1   aSji fOi 
Ti =   —--, Fi =  (4) 

p d   3 X j p d 

then,   in  surf   zone,   equation   (3)   can  be   rewritten  as 

VxT=VxF (5) 

In linear model (O'Rourke and Leblond, 1972), in the outside 
surf zone: 

v x F = 0 (6) 

and in the surf zone 

V x T = V x F (7) 

The  coordinate  system used and the domain  interested 
are duplicated as Fig.  1.  in which • is the angle of  wave 
incidence, A and B, denote the region inside and outside the 
surf zone respectively, 
the shoreline is assumed as 

Y = ctcos kx,  k = 2ir/L (8) 

where L is spatial wave length of shoreline, and a shoreline 
wave amplitude. Applying conformal mapping (Lyne, 1971) 

z = x+iy,   C=y-| + iy2 = z-iae^z (9) 

it yields, up to 0(ak) 

Mi = x+ae~ky sin kx 

H2 = y-ae~ky cos kx 

The continuity equation (2) then becomes 

  (j-1/2 du) +   (j-1/2 dv) = 0 (11) 
3M1 3w2 

where J is Jacobian: 

,    2 
J = |__L_ |  = i+2ake-

ky cos kx + (ak)2 e-2ky     (12) 
dz 

By  equation  (11)  the  velocity components  u  and  v  are 

(10) 
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Fig. 1 Schematic diagram of coordinate system. 

wave 

(b) 
Fig. 2 Cases designed for calculatic 
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represented in terms of the transport stream function x as 

J1/2  sX       ji/2 ax 
u =     ,  v =     (13) 

d     dv2 d    3^ 

In surf zone, we express radiation stress components in (p-|, 
n2) system to be (Tv-|, Ty2) then 

3                     8 
V x T = J[  (J-1/2.TM2) (j-1/2v,1)j   (14) 

3)J1 8,J2 

where  T-y-| ,   Tv>2   are  defined   as 

J a 3 
TM-[   =       [ (J-"|/2.Sy1 M1)   +    (J-1/2   S'U-]P-|)] 

P d 3U -| 3p„ 

TH2   =   —^—  [—^-(J-1/2.SU2M)   +   —— (J-1/2   Su<2u2)] 

(15) 
pd 3 y .. 3 Ug 

Substituting     equation   (15)   into  equation   (5),   and  expanding 
into  Taylor's   series,   up   to  0(sk),   we  obtain 

a f 3x 3 fax 

3p1        Pd2      3M-! Pd2        3w2 

3 J 3 J 3 
J   {    [ (J-1/2. SK-J M2)   +  

3y-| P d       ay-j pd 3y2 

(J-1/2. Sy2u2)]   -   -J—   [   — —   (J-1/2.SWTM!) 
3u2 pd 3n1 

J               3 
+       (J-1/2.   SU2P2)]} (16) 

p d 3y2 

where  J-|   can  be  expanded  by  Taylor's   series,   up   to  0(a k) 

J-1/2   =   1-cckekM2   cos   ky (17) 

In     the     region  outside   the   surf   zone,      equation   (6)   can     be 
similarly   transformed   to  be 

3 fax a fax 

V x   F  =   J   [  (    -  )   +      (    )] 
3M1 Pd 3 y -, 3y2 pd 3y2 

=0 (18) 

we   further   assume   that   in   the  seaward   zone   the  mean  currents 
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do not reach to the bottom, but to about the water depth at 
the breaker line, as assumed by Liu and Lennon (1978). Thus 
the total water depth d= c + h^, where h^ is the water depth 
at the breaker line, will be taken as a constant. Assume 
d=di0, we get 

2      2 
i  X      3  5< 

Let 

2      2 
3p1     3yg 

= 0 (19) 

2 IT 2 IT , 
 I  ,   w9=  n (20) 

We can get the nondimensional equation: 

= 0 (21) 

,2     ,2 
3 X    3 X 

2      2 
3C     3n 

3. General solution 
„  In  the  seaward zone,  the stream  function  satisfies 

V X=0.We  will label the stream function in each one of the 
two  regions with a corresponding letter subscript.  Now  we 
consider  some boundary conditions.  The normal velocity  at 
the shore line must vanish, that is 

XA (E ,0) = 0 (22) 

Further, the normal velocity must be matched at the 
boundaries between the two regions. By matching the stream 
function across those boundaries, this requirement is 
achieved: 

XAU , 1) = XB(C ,6 ) 

XA<B(0,n) = 0 
(23) 

Set 

XB(E ,») = X 

XA = XT +S  X2 (24) 

for s is a small perturbation magnitude. In surf zone, we 
shall assume that the total mean depth is a linear function 
of the distance from shore 

d = m (5 ).n (25) 

where m(? ) = m0 (1+p cos 2TTE;), m0, p are small quantity. Set 
a simple, but reasonable form for <t>, , we take 

<t>b = - *Q sin 2TTS (26) 

Substituting equation (25) and (26) into equation (16) and 
make it nondimensional with 
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1/2 5/2 irg Y   m. * 
XA;B  = U    •   X*A;B (27) 

C 

we finally get the solutions for the region inside the  surf 
zone: 

x* = Is-  ( Sin 2*? + — P Sin 4*£ ) -7
3 

6 4 

+ ±JL 8p ( Sin 2fff   + — p Sin 4TC$ ) • 7 
7 4 

+   7?r^°2   5  • Sin 4*f • 7
4 + («k) {-^-( Sin 4?rf 

24 4 

+ _ p Sin 2s?  + — P Sin 6?r£ ) • {.—-—— 'V 
4 4 o 4 

( k^2b)
2        s;]_ i£ 5 (Sin 2fff + -P Sin 2*£) 

10 4 4 

*     2M» .Tl+ liL^lil.7T D 

Cf7,"~9       '?+ 11 

^P   /-  Ci„   ,~£ J.  2P_ Sin   9ffP 4-   A + iE£Z( Sin 4TT?+ -^-Sin 2fff + — P Sin 6*? ) 
2 4 4 

11 

1 7 9 11 

,,   r7
4     2k^2b   ..,,   ,  (k^2b)2  „,i 

.(Sin27tf+Sin6ffO'C-y 25~*V 42~~ 

+ £l»jli( Sin 2^ +Sin 6,0 • C ^ - ±f" V 

O^Ol      6 ^  +  **'*-. (Sin 4*f + 4pSin2*f 
12 4 4 

+ ApSin6jre).cil_JE£».,.+i]L^ll.9.D} <2* 
A 4 5 1 <s 
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Equation (21) for the region outside the surf zone is the 
Laplace equation which can be solved easily. The final 
nondimensional form of the solution is 

XB* =e~2?r(,7~5) . {  -^ C Sin27r£+ApSin 4*? 

r2*(v-d) ,+ UL §p CSin27r£+ A p Sin 4s? 
7 4 

e v/ 1 +-—<5<£„2 -Sin 4^5 • e 
J      24 

(ak){^CSin4^.a-27r(^5) 

4 

.ApSine^-e-4^^"0^-! PSin2^] 
4 4 

r 1 - JEifUL +   (k^">2  ]   - J^I   . [ Sin 2*? 
L 3 4 10 4 

5     c. ,     -2^(7-5)-,     r2      2 , (k^zb)2-, 

+ — <5p [ Sin 4^?-e   27r( *    S ) + — p Sin 2*? 
2 4 

,    3       c-     *   t      ~4T( 7-5) ..      , 2        2k^2b H p Sin 6?r? -e J  • I       ~~ 
4 7 9 

+ l^>l3+^o25CSin27r?+Sin6^.e"4,r(,7-5)] 

[— ~ —  k u2h H _H —-— L bin 2?rf 
6 25^ 42 4 
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Sine^-e ].[T —+      12     ] 

y       • f Sin 47r£- e -) p Sm 6ir? 
4 4 

4 4     5 

+ Uiiiibll^ } } (29) 
12 

The solutions X^ and Xg (A indicates inside surf zone; 
B outside) finally obtained include two parts, one concerned 
with (ak) and the other independent on (ak), where (a k) 
denotes the steepness of wavy shoreline. 

4. Numerical results 
If we neglect O(ak), then 

• 5 
X*^ = n 3 {  —   [   sin 2 rr C +   p sin 4 n E ] + 

6 4 
2TT 7 IT    2 
 i p sin 2TT? . n 1' 2 +   ^ sin 4 TT c . n } 
7 24    ° 

(30) 

o 5 

e 

-2it (n-«) j  jsin 2irj. +   p slQ 4lIj 

6 4 
2 IT 7 TT 

-2TT(H-6)]+  6 p sin 2TFC +  S(|)2 
7 24 o 

s in 4 TT5 .e-2" (n-« )} (31) 

Set 

V*A,B = X*A,B x 102 (32) 

we take the term up to 0(a k), in order to find the 
difference from that up to 0("k)° done by Uda (1982). Two 
cases of topographical conditions, as shown in Fig. 2, are 
designed. In case A, we take <t> =0.35, p=1/3; in case B, 

<t> =-0.35 p=l/3 are used. Then take the wave length of wavy 
shoreline L=1000m, 500m and 300m in turns, the amplitude 
a=50m and 80m, and U2b=100m. Some typical results are 
shown in Fig. 3-10. Table 1 shows the corresponding between 
those Figures and cases considered. 
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Table 1. Corresponding between Figures and Various Cases. 

a =50m 

up to 0(ak) up to 0(a k)° 

X^case 
A B A B L=         ^^ 

1000m 
(a k/2 =0.05) Fig. 3 Fig. 6 Fig. 7 

500m 
(a k/2 =0.1) Fig. 4 

300m 
(a k/2 =0.16) Fig. 5 Fig. 8 

a =80m 

up to 0(a k) up to 0(a k)° 

^^^^ case 
A B A 

_ 
L=      ^^ B 

1000m 
(<<k/2 =0.08) Fig. 9 Fig. 10 
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5. Concluding remarks 
Although the situations considered here may be too 

simple, two important conclusions are made concerning with 
the effects of the steepness of a wavy shoreline on the 
nearshore circulations: 
(1) The smaller the steepness of a periodic shoreline,  the 

larger the scope of the nearshore circulation. 
(2) It  is  common  that  there  appear  two  even   three 

circulations, when the steepness becomes larger to some 
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600 

3 Circulation pattern, 
Case(A), ctk/2Tr=0. 05, 
L=1000M,   a=50M. 

Fig. 4 Circulation pattern, 
Case (B), ak/2ir=0.1, 
L=500M, a=50M. 

600 

150 

Fig. 5 Circulation pattern, 
Case(A), ak/2Tr=0.16, 
L=300M, a=50M. 

150 

Fig. 6 Circulation pattern, 
Case(B), ak/2ir=0.05, 
L=1000M, a=50M. 
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600 6OO1 

Fig.   7  Circulation   pattern, 
Case(A),   0(ok)   term 
neglected,   ak/2ii=0.05, 
L=1000M,   a=50M. 

150 

Fig. 8 Circulation pattern, 
Case(A), 0(ak) term 
neglected, ak/2n=0.16, 
L=300M, a=50M. 

600 

laattA 

Fig. 9 Circulation pattern 
Case(A), ak/2Tr=0.08, 
L=1000M, a=80M. 

Fig. 10 Circulation pattern, 
Case(B), ak/2iT=0.08, 
L=1000M, a=80M. 
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amount   at   extent. 
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