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Abstract 

A combination of a physical model and numerical models 
has been used in the design of a block revetment for the 
Danish North Sea coast. The wave pressure loading on the 
revetment during design conditions was investigated in a 
physical scale model. The measured wave pressures were used 
as a boundary condition for the numerical models. Solutions 
for the flow equations through the coverlayer, filter layer 
and subsoil were then obtained in the numerical models, 
taking into account the influence of turbulence. With these 
solutions the stability of the coverlayer and subsoil was 
evaluated. The paper presents a description of the various 
models and information about the design of the revetment. 

Introduction 

Numerical models were developed within the scope of a 
research programme on block revetments in order to calculate 
the loading on a block revetment during wave attack, 
Hjortnaes-Pedersen et al (1987) and Bezuijen et al(1987). 
This research programme was commissioned by the Dutch 
Department of Public works (Rijkswaterstaat) and was 
performed by Delft Hydraulics in cooperation with Delft 
Geotechnics. The numerical models were used to calculate the 
pressure distribution in the filter layer and subsoil below 
a block revetment when the pressure distribution on the 
revetment due to wave attack is known. Both the wave 
pressures and the calculated pressures underneath the 
revetment determine the uplift pressures on the coverlayer 
of the revetment. These uplift pressures can be compared 
with the "strength" of the coverlayer. 
The wave pressures which were required as inputs for the 
numerical models were determined by means of physical model 
tests. Since only wave pressures on the slope had to be 
measured and the influence of wave impacts on the stability 
of a block revetment could be neglected, these pressures 
could be measured in a small scale model. 
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The combination of a physical scale model and numerical 
models was used to evaluate the design of a dune toe 
protection which is now under construction in parts of the 
Danish North Sea coast. 
The design of the block revetment is presented in this paper 
and the physical model tests described. A brief description 
of the numerical models is given together with the results 
Of the calculations for this revetment. Finally the 
modifications in the design, based on the results of the 
calculations, are discussed. 

2. Block revetment used as dune protection 

On some parts of the Danish North Sea coast erosion has 
been very large, on average 3 - ^ m a year. This has caused 
some dunes to disappear and others to become very weak. As s 
result the low areas behind the dunes are open to flooding. 
On these stretches of coast it is necessary to stop the 
erosion and to re-establish the flood protection. The 
measures being taken against the erosion are a combination 
of onshore and offshore beach nourishment and low detached 
breakwaters parallel and close to the shore line. The flood 
protection is being re-established by building artificial 
dunes protected by a concrete block revetment. Concrete 
blocks are being used because: 

a. They are cheap compared with other types of artificial 
coverlayers. 

b. Denmark has no quarries close to the North Sea coast. 

c. Concrete blocks look relatively atractive into the sandy 
coast environment. 

d. Constructional procedures are relatively easy and a high 
quality can be achieved. 

e. The concrete is very durable in a marine environment. 

A sketch of the concrete block revetment is presented in 
Figure 1. Water level and wave conditions vary depending on 
the  location. The conditions expected with a return period 
of 100 years, for the most exposed structure, are shown in 
Table 1. 
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DESIGN CREST «1C-HT -81 

Figure 1: Original cross section for the design parameters 
given in Table 1 

Waterlevel: 
Waves in a depth 

of 19 m 

Shore profile: slope 

Revetment slope 

3.65 m above datum 

H  = 8.2  m 
s 

Tp = 12   s 

1:20  from -0.30 to -6.00 m 
below datum 

1:100 below -6.00 m below datun 
1:2   from - 0.30 to + 8.10 m 

above datum 

Table 1: Design conditions 

The design crest height at the various locations is taken as 
the sum of the high water level, the wind set-up and the 
maximum breaking wave height above still water level. For 
the conditions given in Table 1 the crest height will be 8.1 
m. Since waves will run-up the slope to above the level of 
the block revetment, the first 5 m of the crest of the 
structure has been protected with rubble. 
The toe of the structure has been designed at such a level, 
that there will be no damage by scouring during the design 
storm. 
The blocks are placed on a filter structure of 40 - 60 mm 
rubble between two layers of geotextile. The purpose of the 
upper layer is to prevent the rubble layer from being filled 
with sand from above. The blocks are 0.75 m high and weigh 
3,000 kg. Some of the blocks are 1.0 m high in order to 
introduce slope roughness. 
The following questions were raised when evaluating the 
design: 
- Can block thickness be reduced? 
- Is a 1:3 slope preferable to a slope of 1:2? 
- What is the influence of revetment roughness on run-up 
produced by using blocks of different height? 
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3. Physical model 

Small-scale model tests were carried out in a wave flume 
to obtain information about the wave pressure distribution 
on the slope. The wave flume has a depth of 0.8 m and is 
equipped with a system to compensate for wave reflections. 
The tests were carried out with irregular waves on slopes 
of 1:2 and 1:3- Since only the wave pressures on the slope 
had  to be measured in a physical model test (to provide 
inputs for the numerical models) it was unnecessary to model 
the revetment itself. Only the geometry of the revetment and 
the foreshore were of interest in the physical model and 
these were modelled in concrete. The model layout is shown 
in Figure 2. 
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Figure 2: Model layout 
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0 81 

Figure 3: Location of wave pressure gauges on the 1:2 slope 

The model tests indicated that the wave runup on the 1:20 
slope can be considerable and during the design conditions, 
Table 1, and with a crest height of 8.2 m in prototype, more 
than 10% of the waves passed the highest indicator of the 
wave run-up meter. This implies a wave run-up of over 43 m 
up the 1:20 slope. These run-up values led to an investi- 
gation of the run-up as a function of the crest height. The 
results are shown in Figure 4, for the design conditions 
given in Table 1. 
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PERCENTAGE  OF 
WAVES CROSSING A 
LINE  37m   BEHIND 
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SLOPE 
1 :2 

*-+- 
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Figure 4: Percentage of waves crossing the 37 m line (see 
text) as a function of the crest height 

On the 1:20 slope a line 37 m from the top of the revetment 
in prototype was chosen to indicate the extent of run-up, 
because information was available about the waves crossing 
this line also for the tests runned at different geometric 
scales. 
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More  waves passed the 37 m line with the 1:3 slope than 
with the 1:2 slope, but the difference was small. 
It appeared that the increased roughness, obtained by 
using blocks of different height, would led to a 10$ 
reduction in the number of waves crossing the 37 m line 
during design conditions. During moderate storm conditions 
this reduction would be even higher. With a significant wave 
height of 3 m in deep water the reduction would be up to 
25%. 

The wave pressures measured in the physical model have 
been used in the numerical model. This topic is discussed in 
the following chapter. 

4 • Numerical models 

In order to evaluate the stability of the revetment, it 
is essential to determine the uplift pressures on the 
blocks. These pressures are determined by the difference 
between the pore pressure in the filter layer under the 
blocks and the wave pressures on the blocks. If the mean 
uplift pressure on the block is larger than the pressure 
corresponding to the weight of the block plus the friction 
forces between adjacent blocks then a block can be lifted 
out of the revetment. The stability of the sand underneath 
the revetment is also important since no sliding may occur. 
These stability criteria cannot be investigated in a small 
scale model test because of the soil mechanical scale 
effects which occur in such a test. A large scale 
investigation is a possibility, but in this project it was 
decided to use a numerical approach to evaluate the 
stability criteria. The uplift pressures on the blocks and 
the stability of the blocks were calculated with the 
STEENZET/1 program, to calulate the pore pressure in the 
filter layer and the resulting block movement (see 
Section 4.1). 
The pore pressure distribution in the subsoil was calculated 
with the STEENZET/2 finite element program which can be used 
to calulate the pressure distribution in both the filter 
layer and the subsoil, assuming no block movement (see 
Section 4.2). This pore pressure distribution was used in a 
stability calculation to evaluate the geotechnical stability 
against sliding. These numerical models are described 
briefly in the following sections. 

k.l   STEENZET/1 

The pressure distribution in the filter layer is 
determined by the flow through this layer and the flow 
through the joints around the blocks. The flow in the 
subsoil itself has no influence because of the low 
permeability of the sand compared to the permeability of the 
filter layer. Assuming a flow parallel to the slope in the 
filter layer, a flow perpendicular to the slope in the 
coverlayer and a coverlayer permeability which is 
concentrated in the "horizontal" joints, see Figure 5. the 
following formula can be derived for the potential in each 
joint: 
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kbD 
k'l2 

kbD 
k'l2 i + lJ t,i 

Where:   *. 

t,i" 

the piezometric head in the filter layer 

near joint i 
the piezometric head on the revetment 

near joint i 
the thickness of the granular sublayer 
the thickness of the blocks 
the length of the blocks 
the permeability of the filter layer 
the permeability of the cover layer 

(1) 

(m) 

(m) 

(m) 
(m) 
(m) 
(m/s) 
(m/s) 

Figure 5: The STEENZET/1 finite difference scheme 
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The turbulent flow has therefore to be linearized. This 
linearisation is performed in such a way that the flow 
velocity calculated with the linear flow relation is the 
same as the flow velocity calculated using a turbulent 
permeability relation at a gradient equal to sin(a), with a 
the slope angle. 

The piezometric head on the revetment (4>. .) is 
t, 1 

determined from measured wave pressures by linear 
interpolation of the results of the pressure gauges. The 
wave pressures measured in the small scale model can be 
transferred to prototype values by using Froude's law. The 
measured pressures can be scaled up using the geometric 
scale and the time scales using the square root of that 
scale. This means that the 50 Hz sampling frequency in the 
model tests, at a scale 1:16, corresponds to a 12.5 Hz 
sampling frequency in prototype. 

The *. values were calculated for the various time steps 
x 

using different values of •  .. The position of the phreatic 

surface is calculated for each time step by taking the still 
water level as a starting position and adapting the phreatic 
level to the nett flow of water in the filter layer. In this 
way the potential distribution can be calculated for each 
sampling of the wave pressures over a period of several 
waves. The results of this program have been compared with 
the results of large scale model tests and show good 
agreement (Bezuijen et al (1987)). 

If the mean calculated uplift pressure on one block 
exceeds the pressure corresponding to the weight of the 
block and the friction forces, then a block will start to 
move. This movement can also be calculated in the program 
using a simple routine. The uplift pressure, multiplied by 
the block area, determines the uplift force. Subtracting the 
weight of the block and the friction force gives the nett 
force F , which causes block movement. The acceleration of 

n 
the block can then be calculated using the well known 
relationship: 

F = M..a n  b 

Where: M,  : the mass of the block (kg) 

a  : the acceleration of the block (m/s2) 

Double integration of the acceleration giving the block 
movement. 

The movement calculated in this way however is too large. In 
reality the block movement is less, because the moving block 
itself causes a pressure decrease in the filter layer. A 
routine that includes the influence of the moving block on 
the pressure distribution has been developed. This routine 
was not used in this project because, due to lack of 
experimental evidence, it was not certain that the results 
would always be on the safe side. 
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4.2 Results of STEENZET/1 calculations. 

Calculations were made for slope angles of 1:2 and 1:3 
and various coverlayer and sub layer permeabilities. The 
influence of the slope on the maximum uplift pressures 
appeared to be small. This means that a 1:2 slope is in fact 
the most economical. The results of a typical calculation 
are shown in the Figures 6 and 7- The black area shows the 
measured wave pressures and the grey area the uplift 
pressure, but only when larger than corresponding to the 
weight of the blocks. The vertical height of the area 
represents the pressure, in metres of water, at the location 
were the pressure was measured. Figure 6 shows the position 
of the wave front at maximum wave run down; there is hardly 
any water on the revetment and as a consequence the wave 
pressures are very small. 

10- 

MEASURED   WAVE 
PRESSURE 

[ Lift pressures larger than those corresponding 
the weight of the blocks and movement of the 

locks did not occur. 

Figure 6: Wave pressure measured during wave run down. 
Results of STEENZET/1 calculations 

Figure 7 shows the pressure distribution just after wave 
impact. From these figures it is clear that, for the 
revetment being studied the highest uplift pressures can be 
expected just after wave impact, when two areas of high wave 
pressure occur on the revetment separated of an area of low 
pressures. The high wave pressures are transmitted through 
the filter layer, leading to high uplift pressures in the 
area with small wave pressures. 
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measured   wave   pressure 

0J 

Figure 7: Wave pressure measured after wave impact. Uplift 
pressure when lagrger than corresponding to the 
weight of the bloks and calculated movement of the 
blocks. Results of STEENZET/1 calculations 

Although during wave run down the filter layer is almost 
completely filled with water, the maximum wave run down does 
not appear to be a critical situation. The uplift pressure 
is never larger than the pressure that corresponds to the 
weight of the blocks. Due to the hydraulic gradient in the 
filter layer the pressure distribution in that layer is by 
no means hydrostatic, leading to small pore pressures and 
uplift pressures. 

The permeabilities of coverlayer and filter layer had a 
distinct influence on the uplift pressures. The lowest 
uplift pressures were found for a minimum filter layer 
permeability and a maximum coverlayer permeability. The 
permeability of the coverlayer is determined by the 
permeability of the joints and is reduced due to the 
geotextile between the blocks and the filter layer. The 
design was therefore adapted and the geotextile removed. 
Without the geotextile some sand will be transported into 
the filter layer. However this sand will only reduce the 
filter layer permeability. Dutch experience has shown that 
this sand never causes trouble. 
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A design criterion had to be chosen for det 
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An unexpected result was the influence of the toe 
permeability on the calculated uplift pressures. This was 
simulated in the calculations by changing the permeability 
of the lowest joint in the revetment; Figure 8 shows this 
influence. The increased permeability leads to higher 
piezometric head in the lower end of the filter layer and, 
as a consequence higher uplift pressures. 

6- 

4- 

piezometric head 
\pn slope measured 

TOE   PERMEABILITY = 10X PERMEABILITY OF A   JOINT 

TOE    PERMEABILITY;   PERMEABILITY OF A JOINT 

piezometric   head 
in   the   gravel 
(calculated) 

0 12 3 

vertical position on the slope (m) — 

Figure 8: Influence of toe permeability on uplift pressures 
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1.3 STEENZET/2 

The results of the STEENZET/1 calculations showed that a 
1:2 slope would be more economical, because less concrete is 
needed. The calculation however omits the effects of sand 
body sliding. This kind of failure can occur locally when 
the grain stress in the sand is reduced by seepage. 
The pore pressure distribution in the subsoil due the wave 
attack was therefore calculated with the STEENZET/2 program. 

STEENZET/2 is a 2-dimensional finite element program 
specially developed to calculate the pore pressure response 
under revetments due to wave attack. The model is based on 
what is referred to as the storage equation: 

Vq = C d*/dt (3) 

Where: • : the piezometric head 
q : the specific discharge 
C = pgn|3 
p : the mass density of the fluid 
g : acceleration due to gravity 

porosity 
compressibility 
d/dx,d/dy 

(m) 
(m/s) 
(1/m) 

(kg/m») 
(m/s8) 

( ) 
(m2/KN) 

With solutions of this equation it is possible to 
investigate the influence of the air content of the pore 
water on the results. The program can handle turbulent flow 
on the base of the Forchheimer relation and various 
materials can be considered. Measured wave pressures can be 
used as boundary conditions in the same way as in the 
STEENZET/1 program. A more extended description of this 
program is given by Hjortnaes-Pedersen et al(1987). The pore 
pressure distributions calculated with STEENZET/2, were used 
in a stability analysis as described by Bishop. This method 
is well known and is described in, for instance Terzaghi and 
Peck (1967). 

>\A   Results of STEENZET/2 Calculations 
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Figure 9: Finite element mesh used in STEENZET/2 
calculations 

WAVE  PRESSURE 

Figure 10: Measured wave pressures and calculated lines with 
epuipotential. Results of STEENZET/2 calculations 
-assumed air content in the pore water: 1% 

WAVE   PRESSURE 

Figure 11: Measured wave pressures and calculated lines with 
epuipotential. Results of STEENZET/2 calculations 
-assumed air content in the pore water: 5% 
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Figure 12: Adapted design based on model studies 
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rubbl 
xtile 
d. 
layer of relatively small gravel (16-32 mm 

e is used for the crest protection, 
between the blocks and the filter layer 

e manufacturing process the surface of the 
made irregular so that the joints will be 
wide. 

xtile between the blocks and the filter layer 
ed by a filter of relatively small gravel in 
reduce the uplift pressures. This makes it 
to reduce the block thickness from 0.75 to 

The model tests showed that increasing the roughness of the 
slope by varying the thickness of the blocks reduces the 
wave run-up, especially during moderate storm conditions. 
According to the stability calculations a structure with a 
slope 1:2 is stable during design conditions. Since the 
difference in calculated maximum uplift pressure and 
measured run-up with a 1:2 slope and 1:3 slope is only 
small, a 1:2 slope is preferred because less concrete has to 
be used. Figure 12 shows the adapted design. 
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A total of 11,420 m of this revetment had been built by 
September 1988. 
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