
CHAPTER 149 

NUMERICAL MODEL OF BREAKWATER WAVE FLOWS 

Alex C Thompson* 

ABSTRACT 

A mathematical model of flow on a sloping breakwater face is 
described and results of calculations compared with some 
experimental results to show how the model can be calibrated. Flow 
above the surface of the slope is represented by the shallow water 
wave equations solved by a finite difference method. Flow within 
the breakwater is calculated by one of two methods. A solution of 
the linear seepage flow equations, again using finite differences or 
a simplified model of inflow can be used. Experimental results for 
runup and reflection coefficient are from tests performed at HRL 
Wallingford. 

INTRODUCTION 

The behaviour of waves on a breakwater particularly as far as they 
affect stability of the armour layer has been investigated 
extensively. Despite this the process is still poorly understood 
especially for slender concrete armour units, Burcharth 1987. 
Expensive physical model tests are undertaken for each new 
breakwater and the interpretation of these is uncertain. The writer 
has conducted experiments in simple flows to try and understand 
armour stability and scale effects Burcharth & Thompson 1983, 1984. 
If similar tests can be combined with a numerical model giving the 
velocities on a breakwater face the understanding of armour 
stability may be increased and the amount of physical model testing 
reduced. The calibration of the numerical model for a particular 
type of armour would be through simplified tests. This paper is 
concerned with a suitable numerical model for the task. One such 
model has ben shown by Hibberd & Peregrine 1979 to give good results 
for a wave breaking and running up a shallow slope. This model is 
based on the shallow water wave equations so it calculates only the 
depth averaged velocity at any point on the slope. The detailed 
velocities in the breaking part of the wave may not be necessary to 
predict runup reflection and some measures of stability however. 
This seems to be confirmed by the work of Kobayashi 1986. 
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He has applied a model based on Hibberd & Peregrine's work to a 
steeper slope typical of a rock armoured breakwater with some 
success. Two main areas require investigation if the model is to 
be applied to slopes covered with concrete armour. Firstly it must 
be  shown  that  the  model  works  with  a steeper  slope   (upto   1   on   1.5 

Secondly the effects of a porous armour layer and core must be 
accounted for. The assumption of an impermeable slope as used by 
Kobayashi may be reasonable for a rock armoured slope, it must be 
less valid for more porous armour such as those tested by Allsop 
1983, Burcharth 1979 and Timco 1984. To separate the effects of core 
permeability and armour permeability and so make calibration of the 
numerical model easier physical model tests with an impermeable core 
have been performed. These are compared with calculations for an 
impermeable slope,  a thin permeable layer and a permeable core. 

MATHEMATICAL MODEL 

The motion of the water on the breakwater face is described in this 
model by the one dimensional equations for nearly horizontal flow. 

d(hu)      +     d(uhu)      =    -ghdn -f/u/u 

dt dx ~dx T (1) 

dh   4   dChu)      =     0 (2) 
dt dx 

Where   h   is   the   depth   of   water above   the   slope   and   u   the   mean 
velocity.     Both  are  at  a distance x  from  the  toe  of the  slope  and  a 
time  t  after  the  start  of motion. The  water  surface  elevation  above 
still water level is n (n=h-D). D is the still water depth and f 
the friction factor. 

These equations are solved by writing them in finite difference form 
using the Lax Wendrof method. If equations (1) and (2) are combined 
and expressed in vector form this gives: 

dU   +   dF   +   G   =   0 (3) 

dt dx 

Where U - {hu} F = {huu+gh/2} G = {ghtana+f/u/u} 
0i } {     hu     } { 0 } 

tana    = tangent of slope angle. 

A finite difference grid of constant space interval Sx and time step 
6t is used. If the quantities at x=jSx and time t=nSt are given 
subscripts j and n then the finite difference equations are: 
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U(j.iH-l)    =    U(j,n)   -    St/8x[F(j+l,n)-F(j-l,n))/2+8xG(j,n)] 

+    (St/8x)2[g(j,n)-g(j-l,n)-6xS(j>n)]/2 

g(j,n)=[A(j+l,n)-HA(j,n)][F(j+l,n)-F(j,n)+dx(G(j+l>n)+G(j,n))/2]/2 

dF = { 2u gh-uu} S = dG   = »    {-gtanad(hu)/dx} 

dU £ 1 0    } d7 {             0              } 

Dissipation is introduced to damp the short waves which appear in 
the solution when a steep wave front is formed. This is applied 
after every time step using a dissipation constant AD with the value 
0.1 in the equation: 

U(j,n) - AD*U(j+l,n)+(l-2*AD)*U(j,n)+AD*U(j-l>n) (5) 

The boundary conditions applied to produce a model of the flow on a 
slope were as follows. At the shore boundary the depth of flow 
becomes zero and the position of this point varies in the finite 
difference grid. Hibberd and Peregrine developed a comprehensive 
method of dealing with this condition which worked well on the thin 
runup layer formed on a smooth shallow slope. A simpler condition 
has been used here which is belived to 
be adequate for the steep rough slopes considered. Sufficient 
points are included in the calculation to cover the maximum runup. 
The depth h at each point is tested and if it is less than a minimum 
value hm then h is set equal to hm and the discharge hu is made 
zero,    hm is made 0.004 times the depth at the toe of the slope. 

At the seaward end of the calculation both the water depth h and the 
discharge hu must be given as a function of time. The surface 
elevation of an incident wave ni can be specified, as discussed 
below. The elevation of the reflected wave nr can be found as in 
Kobayashi's work. These two quantities are added to give the total 
surface elevation at the toe of the slope. The discharge can then 
be found from the quantity 0 found in the backward characteristic 
equation. This quantity is defined as: 

0   =  u-2(gh)* (6) 

The equation for 0 is: 

dj8   +    (u-c) d0   =   gtana ,„, 

dt dx 

Where c = CgD)* is the wave speed. 
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The value of $ can therefore be calculated at the seaward boundary 
from equation (7) at the start of a new time step. Using the 
definition of depth, 

h   =   D    +   ni   +   nr 

And from linear long wave theory, 

u   - (c/D)(ni-nr) 

Putting these in equation (6) and using the binomial theorem to 
expand the square root gives: 

nr - (-c/g) Gs/2 + c) 

The incident wave ni is taken as a sine wave for some calculations 
but in most cases a suitable profile is taken from Dean's stream 
function theory. A surface profile is chosen from Dean's tables 
according to the period and height of the wave selected and the 
surface co-ordinates stored in a data file. 

Typical values of the time step etc used in the model can be given 
for the example of modelling waves on a 1:2 slope in a depth of 
0.3m. This is the slope tested in a wave flume at HRL. The grid 
size Sx in the x direction is 0.0075m and 150 points are used in the 
calculation. The time step 6t is 0.00375s requiring 667 steps to 
calculate one period of a 2.5s wave, the longest period wave 
investigated. 

Permeable Slope Model 

The model described above is used to calculate wave action on an 
impermeable slope which forms the largest part of the work described 
here. It can also be linked to two models of flow in a permeable 
slope and a smaller number of calculations are made in this mode. 
The first model of a permeable slope assumes that flow takes place 
only in a thin layer just below the surface of the slope. This 
might approximate to the flow on a slope armoured with a very porous 
layer such as the experiments to be described. The water surface in 
this layer is assumed to rise at the same rate as the uprushing wave 
tip. If the thickness and porosity of the layer are specified the 
discharge into the layer from the water above the slope can be 
found. This discharge is taken to arise from a small number of 
points near the wave tip and to cause an equal velocity into the 
slope at each of these points. The water depth h and discharge hu 
at these tip points are then adjusted before the next time step of 
the Lax Wendrof computation is executed. The equations for this 
adjustment are: 

h1 - h - vst hu1 = hu(hVh) (9) 

Where h1, hu1 are the adjusted values of h, hu and v is the velocity 
into the slope. The downward velocity of water in the permeable 
layer is assumed to have a maximum value and outflow from the layer 
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is constant once this is reached. The wave tip can therefore leave 
the water surface in the layer behind and inflow only resumes when 
the wave tip rises above the water in the layer again. Typical 
parameters for this model for the HRL test case are: layer depth 
0.042m (.07mxporosity0.6), number of tip points 5, maximum 
downward velocity O.Olm/s. 

The second model of a permeable slope allows for a large region of 
any shape to underlie the slope. This has a constant permeability 
at present but the method can easily allow for variations in 
permeability, see Thompson 1986. The water motion in this permeable 
region is assumed to follow Darcy's law, implying a linearisation of 
the actual turbulent flow relationship between head gradient and 
velocity. The equation for the total head H at any point is then: 

d(kdH)    +   d(kdH)    =   0 

dx(dx) dy(dy) 

This equation is solved using a finite difference method as follows. 
The permeable region is covered by a grid with spacing 
Ax horizontally and Ay vertically. These spacings are equal and 
larger than the spacing 8x in the grid for the Lax Wendrof solution. 
The finite difference version of equation (10) is the familiar five 
point formula solved by successive over-relaxation. This iterative 
method allows the solution for one time step to start from that for 
the previous step which will be quite close to the required 
solution. The same time step St is used as for the Lax Wendrof 
solution of the flow above the slope. The free surface in the 
permeable region is moved using this time step and the boundary 
conditions on the slope taken from the next solution for water 
depth above the slope. Motion of the free surface is calculated by 
the formula: 

(10) 

dY 

It 
•rdH    -    dH   tane ^ k 
Idy dx I e 

(11) 

where Y is the free surface elevation in the permeable region, H the 
total head, tane is dY/dx, k is the permeability and e the porosity. 

The total head H is put equal to Y on the free surface. The 
location of this in the grid changes as the surface moves and this 
is allowed for by taking the nearest grid point to the surface on 
each vertical grid line as the point where H is specified. In a 
similar way the surface of the slope is represented by the nearest 
points in the grid. The head H at these points is taken as the 
water depth above the slope plus the height of the point above the 
toe of the slope. Water depths are found from the solution for flow 
above the slope at grid points in the Lax Wendrof routine which 
coincide with the interior grid. The remaining boundaries of the 
permeable region are taken as zero flow boundaries and the gradient 
of H is  set to  zero  at these  points.     For example  this  condition is 
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applied along a horizontal line level with the toe of the slope 
which is the bottom of the permeable zone in the present work. The 
seaward end of the free surface is forced to coincide with the tip 
of the wave on the slope. 

The model of wave flow on the slope is linked with the interior flow 
model via the velocities into the slope. These are calculated from 
the head gradients at the slope surface found in the interior flow 
model. The discharge into the slope is calculated at each grid 
point on the slope in the permeable region this is then shared among 
the neighbouring grid points in the wave flow model and a velocity 
into the slope found for each of these. The velocities are then 
used to modify the wave flow solution as before from equation (10) . 

A typical application of the model is to the region shown in Fig 11. 
The permeable region under the slope has a maximum length of 1.17m 
and maximum height of 0.45m. This is covered by a grid of (40x16) 
points with spacing Ax=Ay of 0.03m. The wave flow grid has spacing 
6x=0.0075m (Ax/4) and 150 points. A permeability k of l.Om/s is 
used and a porosity e of 0.4. 

PHYSICAL MODEL TESTS 

The calculations are compared with results of tests performed at HRL 
Wallingford and described more fully in a companion paper at this 
conference, Stephens et al 1988. These tests are made on an 
impermeable slope of 1:2 with a water depth of 0.3m at the toe. 
Regular waves with period of 1.0, 1.5 2.0 and 2.5s are generated in 
a long flume by a hydraulically actuated paddle and measurements 
made before reflections from the paddle build up. Incident and 
reflected wave heights are measures from two twin wire wave probes 
mounted offshore. A further 10 wave gauges are closely spaced 
above the slope and another gauge lies flat on the slope so that 
the wave motion can be followed in detail here. Video recordings 
of the wave on the slope are made for each test which can also be 
analysed    to    give    details    of    the    flow. Only    the    results    on 
reflection coeffient will be discussed in this paper. Tests are 
made on a smooth slope and also on a slope covered with a single 
layer of SHED units 40mm deep. 

CALCULATIONS MADE 

The mathematical models described above are used to calculate the 
same situation as the physical model tests. That is regular waves 
are directed towards a plane slope of 1 on 2 in a water depth of 
0.3m. The wave periods are 1.0, 1.5, 2.0 and 2.5s. A number of 
wave heights are produced at each period in the range .03 to .09m. 
The calculation produces values for the incident and reflected 
waveheight so that values of the reflection coefficient can be 
compared with the measured values. Also calculated are the runup of 
the waves on the slope and a stability number indicating the start 
of motion of rip rap or rock armour placed on the slope. The 
calculations are started with the water above the slope at rest and 
continued   until   the   values   of   reflection   coefficient   etc   repeat   at 



BREAKWATER WAVE FLOWS 2019 

each wave. Usually 4 to 5 wave periods are sufficient with the short 
waves and 2 to 3 with the long waves. For the bulk of the 
computations the wave profiles chosen were Dean's 7A, 6A, 5A and 4A 
for the 1.0, 1.5, 2.0 and 2.5s waves respectively. The reflection 
coeffient etc are plotted against a surf similarity parameter or 
Irribaren number Ir defined as Ttan<*/(2jiH/g) *. 

Impermeable Slope Model 

Fig 1 shows the reflection coefficient measured and calculated for a 
rough slope. The measured results from the impermeable slope 
covered with a single layer of model SHED units are shown as 
crosses. It will be seen that these fall onto separate lines, one 
for each wave period. This may be because at a given wave period Ir 
increases as H decreases. Thus for fixed Ir longer wave periods 
have higher waves. The ratio of wave height to slope roughness will 
be less for the longer waves and this may explain the higher 
reflection at a given Ir for these waves. The different wave 
profiles at each period may be another cause of this effect. The 
computed results shown by the continuous lines are for a friction 
factor of 1.0 and of course only the model for water above the slope 
employed. This friction factor value gives a better agreement with 
the experimental results than the value of f=0.3 used by Kobayashi 
except for T=2.5s. Results with f=0.3 can be seen in Fig 3. 
Fig 2 shows the reflection coefficient for a smooth slope. The 
measurements again appear as separate symbols and this time there is 
much less separation into different groups for each wave period. 
In this case, the reflection coefficient for T=2.5s are slightly 
lower than for t=2.0s. The computed results use a friction factor 
f=0.01 and fit the experimental results quite well except for 
T=1.0s when the reflection is too high. It may be that the 
breaking process is not modelled well enough here or that a higher 
friction factor is appropriate for T=1.0s. The present model uses 
a constant friction factor for simplicity. 

Permeable layer model: 

Fig 4 shows the results from the permeable layer model linked to the 
model for flow above the slope and used to calculate reflection 
coefficient. The effective depth of the layer is .024m calculated 
from a depth of .04m and porosity of .60 for the SHEDs in the 
physical model. A maximum downward velocity in the layer of .10m/s 
is assumed. The number of points affected by inflow at the wave tip 
is 20 which is found to be better than 5. The friction factor f is 
0.3 the value which Kobayashi found suitable for a comparable 
surface roughness but which is too small to model the SHED layer if 
no inflow is allowed. With inflow included as here the calculated 
results agree quite closely with the experimental findings. In 
particular the separation into distinct lines for each wave period 
is reproduced. The results for T=2.5s have been further enhanced by 
changing the wave profile from Dean's 4A to 7A as the wave height is 
reduced and Ir increases. 
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It is interesting that the wave profile assumed has a marked affect 
on many of the results of the computations. The run-up shows this 
especially as can be seen from Fig 5. Here the run-up divided by 
waveheight R/H is plotted against Irribaren number Ir. The full 
line shows results found with Dean's profiles and the crosses those 
with a sine profile. In both cases the impermeable slope model with 
f-1.0 was employed. Run-up/H calculated with a sine profile is more 
strongly grouped by wave period and reaches a maximum at around 
Ir=5. With Dean's profiles however, results from all wave periods 
are closer to a single line and R/H continues to increase with Ir. 

Fig 6 shows a comparison of calculated run-up with some experimental 
results from other sources. The higher solid line is based on work 
reported by Ahrens 1983 for smooth impermeable slopes. Starting 
from Ir-0.4 it shows the line R/H=Ir up to R/H=1.86, the vlaue 
predicted by Miche's law for sine waves on a slope of 1:2. This is 
then joined to points of increased R/H calculated from the crest 
height/wave height ratio for the wave profiles used at each wave 
period as in Ahrens 1983. The results calculated for an impermeable 
slope for f=.01 (x) fall close to this line. With f=.3 (+) 
calculated points fall below this but above the lower full line. 
This line is the experimental result quoted by Kobayashi 1986 from 
work by Ahrens on slopes covered with rip rap. The calculations 
with the permeable layer model (A) fall close to this line. 

Fig 7 shows the calculated results for stability number Ns and some 
experimental results for rip rap. Ns is defined as H/AD where D the 
diameter of rock which is just stable is calculated using a similar 
model to that of Kobayashi with the same constants. The full line 
is the result of van der Meer & Pilarczyk for a slope of 1:2 and the 
lowest damage level. The calculated results with the permeable layer 
mode (x) and the impermeable slope model (+•) both fall close to this 
line for Ir greater than 3. 

Permeable Core Model: 

Results from the permeable core model are more preliminary than 
those above and have yet to be compared with experimental data. For 
these first computations the permeable region is shown in Fig 11. 
All of this region is assumed to have a permeability of 1. Om/s and a 
porosity    of    0.4. The    permeability    value    follows    from    the 
linearisation of the true friction law used by Harlow 1980, 
K=gd/kVav, with k=1.0, d=.01m, Vav=0.1m/s. Fig 8 shows the 
reflection coefficient calculated for 4 wave period/height 
combinations (+). The friction factor f is 0.3 as for the permeable 
layer model. The full line shows the reflection suggested by Seelig 
1983 for breakwaters. This lies well below the results for an 
impermeable slope with only a single layer of armour units, for 
example Fig 4. The run-up found with a permeable core is given in 
Fig 9 (+-). The full line is 0.5 times the smooth slope line from 
Fig 6 and lies just above calculated points. Stability numbers 
computed are given in Fig 10 (+). These lie well above the 
experimental value for an impermeable core shown as a full line. 
Finally   Fig    11    shows    a   typical   water   surface   profile   above   and 
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within the core and contours of Run-up/Waveheight R/H head within 
the core. Contour number 1 shows the location of the lowest head in 
the core and contour number 20 the highest head, the head values 
being the height of the water surface at these points. 

CONCLUSIONS 

The first model described above, based on the equations of nearly 
horizontal flow is able to calculate many of the important features 
of wave motion on a steep impermeable slope. It can be linked with 
the other models described which show promise in calculating the 
effects of permeable regions underlying the slope. 
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