
CHAPTER 73 

LQHG WAVES IK A .SPANISH HARBQTO. 

Jose C.   Santas Lopez   <*) 
Gregorio Gomez Pina   <**) 

ABS1EAQI 

Short and Long Wave data recorded in Bilbao Harbour < Spain ) have 
been analyzed in order to study water movements at the inner basins 
under storms conditions . Some of the trends obtained in prototype 
have been correlated with model test (regular long wave and irregular 
short waves ) . 

This harbour has been chosen for this research on the one hand 
because of tha availability of the physical model and on thge other 
hand because of the means provided by the Bilbao Port Authority 

1.- ITOQDVCTIQS. 

For a long time, there has been a great concern to know the 
behaviour of harbour basins with regard to long waves. These long 
waves can induce resonant effects in water bodies, and consequently, 
in moored ships. As a result, moored ship operations become much less 
efficient. 

After the well known Longuett-Higgins'article, in 1964 (Longuett- 
Higgins, 1964), the amplitude of the long waves associated to wave 
grouping (J3> , was calculated. The expression for this magnitud was 
the following ; 

P = - 3 . g . a2 / 2 . u2 . h* 
Where : a = short wave amplitude ; a = 2JT/T ; T = wave period ; 
h = water depth. 

The wave set-down period <Ta) corresponds to the wave grouping, 
being the former a function of the wave grouping grade and the wave 
peak period (T,»). The experimental evaluation of TH can be done in 
different ways : based in the number of waves in a group (Sand, 1982 
a), from the SIWEH spectrum (Funke & Hansard, 1680), and also, as a 
mean value of the up-zero crossing period, obtained from the SIWEH 
spectrum Tz (SIWEH) (Iwagaki, 1986). 

This set-down wave.is feeded by a second order mechanism from the 
short wave, in different ways (Bowers, 1977). In a harbour, this long 
wave will as a bounded long wave (BLW), as a free long wave produced 
by the energetic inbalance at the harbour entrance, due to water 
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depth differences <FLV) , and as caused by wave breaking phenomena on 
a beach , located near a harbour , such as surf-beats and edge waves. 

The resulting long wave can be in resonance with the different 
harbour basins if Ta is close to the natural period of the basins, 
giving rise to resonant amplifications. 

The BLW has been widely studied and its parameters have been 
correlated with waves characteristics outside the harbour, for both 
unidirectional and directional waves, having a kind of energy 
spreading DO for the latter (Sand, 1982 a, and 1982 b). An 
application of the BLW parameters was carried out for Sines Harbour 
by Vis et all, 1985. 

This piece of work shows the results obtained in Bilbao Harbour 
where the BLW, FLW, and resonant amplifications were simultaneously 
detected under severe storm conditions. Regular long wave model tests 
were carried out to characterize harbour resonant responses. Also, 
irregular wave model tests were performed to compare trends in the 
prototype and model, in regard to long wave energy transfer outside 
and inside harbour basins. 

2.- FIELD DATA ANALYSIS 

Waves outside the harbour were recorded in a Datawell Waverider , 
located at a water depth of h=50 m (Fig.l). The signal transmitted 
by the buoy is collected at a station where it is recorded every 1 6 
3 hours, depending on whether there is an "alarm signal" or not 
( wave conditions such as H,„ >4 m. , and T„ > 16 seg). The recording 
equipment consists of a HP-86 computer. The 5,000 data of each record 
are stored on a hard disk (Dt = 0.5 seg), transferred later to a 
moveable disk, and sent to the CEPYC, in Madrid. Sampling 
characteristics were chosen after studying the stationary and 
representative conditions of the calculated statistical and spectral 
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Fig 1: Position of measurement systems : Outside Waverider <1) 
; "Morro" Waverider (2) ; Ketheorological Station (3) and Pressure 
Sensors (4a & 4b) . 
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parameters (A.Fernandez , 1988 ), A bdeep description of this system 
is shown in Martinez , Santas and Sanz , 1988 . 

Long waves were registered by a pressure sensor, manufactured at 
the CEPYC, consisting of a differential thin film strain gauge, 
located in a watertight chamber, filled with silicone oil. The outer 
connexion was made by two openings in the sensor. One of these 
openings was feeded by a hydraulic filter to remove the tide long 
wave. The filter characteristics are : 6 dB high pass, crossing 
frecuency l/(6hr). The high frecuency removing is done by the 
hydrodynamic attenuation of the water column in the sensor, installed 
at a water depth Df 6 meters. 

The information supplied by this pressure wave sensor was 
digitalized (Dt= 2.5 seg), using series of 4096 points, and recorded 
on other HP-86 system, transferred to a moveabl disk system later, 
and sent to the CEPYC, in Madrid. 

The data analysis carried out later , based on the above mentioned 
information, is summed up bellow ; 

A) Waveri der : 

- Standard statistical parameter calculations 
- Spectral calculations : FFT previous filtering <T<4 seg, and 

T>25 seg ), and later smoothing (18 freedom degrees). The resulting 
time series will be called "Outside Short Wave" (OSW), and its 
corresponding spectrum S(OSW). 

- SIWEH calculations : long wave time series and spectrum , 
statistical analysis of typical values, estimation of TB and grouping 
factor GF (Funke & Mansard, 1980). The SIWEH long wave will be 
called "Outside Long Wave " (OLW), and its corresponding spectrum 
S(OLW), 

B) Inner Wave gauge 

- Surface wave recomposition, in amplitudes and phases, for the 
10 min. > T > 10 sec. band, using the hydrodynamic wave attenuation 
factor K, given as : 

K = cosh (k.h) / cosh (k.b) 
where h = instantaneous water depth ; k = wave number ; b = distance 
from the bottom. 

A frecuency filter transference function was used to correct FFT 
data. Short and long wave band differentiation were defined in the 
following way : 

Long wave : 1/(10 min) < f <0.04 Hz (ILW) 
Short wave : 1/(35 seg) < f <0.1 Hz (IS?) 

Typical statystical parameter calculations, for both time series, 
called "Inside Long Wave" (ILW), and "Inside Short Wave" (ISW)were 
made 

Spectrum calculations for both time series with a previous Bingham 
smoothing, and a later Bartlett smoothing . The number of freedom 
degrees for ISW and ILW were 30 and 18, respectively, 
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2.1.- PROTOTYPE WAVE DATA STQRAQE 

Wave data storage began in March, 1986. The long wave pressure 
gauge was initially placed in position 4a (Figure 1), changing this 
position to 4b, in March 87, where it is still placed. 

It was considered interesting to analyze the data only where long 
wave height was higher than 10 cms. The storms analyzed corresponded 
to the following days i 

Position 4a ; a) March 24-27, 1986 
Position 4b : b) April 20-21, 1987; c) September 4-5,1987 ; 
d)January 22-26, 1988; e) January 30-February 12,1988; f)March 16- 
17, 1988. 

Figure 2 shows the time series for H(z,s), corresponding to the 
Waverider <0SW), the inside short wave (ISW), and the inside long 
wave (ILV) for the stage a). 

Hlz.sl IOSWI 
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cm     ,.100 

_)  Outside Short Wave Fig. 2 : Wave Time Series H(z,s) : <_ 
(OSW),  ( ) Inside Short Wave (ISW),  ( Hnside Long Wave 
(ILW) . Data from 1.23.1988 to 2.17.1988 . 

3.- RESULTS OBTAINED FROM PROTOTYPE MEASUREMENTS 

First of all the short wave data OSW and ISW were correlated and 
compared. Two interesting aspects were found : 

-The correlation between significant wave heights H(z,s) inside 
(ISW), and outside (OSW) was in the range of 8 and 13% (fig. 3a), 
depending on the wave period. 

- The significant and mean wave periods T(z,s), and T(z) have a 
small increment, between 7% and 9%. This fact is also found for 
the peak period Tt> (Fig. 3b). 
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Fig. 3 : Comparison of Statistical Results between ISW and OSW 
3a) : T(z,s>; 3b) : H(z,s). 

As it will be explained later, similar trends appear in the 
physical model. Moreover, the values obtained for wave agitation 
coefficient inside the harbour, from both mathematical and physical 
models, appear to be within the above mentioned range for H(z,s). 

In regard to the long wave measured (ILW) inside the harbour and 
the short wave outside it (OSW) , the main findings are as follows : 

- The correlation between H<z,s), (OSW), and (ILW) depends very 
much on the measurement area, which is indicative of some resonant 
mechanism. For location 4a( Fig.l) this correlation was found to be 

H<z,s) <ILW) = 1.586 . 10-3  . [ ( H . T > (OSW)  / h ] 

This kind of correlation fits better than the quadratic one used 
in Sand's, with data obtained from the stage a). However, for 
position b), which is more favorable for resonant effects due to its 
basin location, the correlation was found to be  (with r:; = 0.8050) : 

H(z,s)(ILW) = 0,0732 + 4,841 . 10"s .[ (H.T)2 <z,s) (OSW) ] / h 

Whereas for a best fit of (H,T), the following formula is obtained 
(ri; = 0.72) : 

H(z,s)(IL¥) =- 0.1177 + 6,319 * 10" . [ (H.T) <z,s) (OSW) 1 / h 

This last expression shows a degree of five times better for 
position 4a than for 4b (Fig. 4a and 4b). This explains a resonant 
effect for the long wave energy. 

The unexpected fact that the quadratic expression for (H,T) is not 
clearly accomplished ,  could be explained by  considering  an 
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Fig. 4.- Correlation between H(z,s) (ILW) and the Product 
<H * T(z,s) (0S¥)) : 4a) Lineal Fitting. 4b) Quadratic Fitting 

amplification of the set-down proportional to H , instead to IP , in 
the inner harbour area. This amplification is due to an attenuation 
of the amplification factor caused by flow separation at the harbour 
entrance <Bowers, 1977). 

The results calculated from the  ILV,  OLW,  and SIWEH waves, 
obtained from the outside wave record, have also been correlated. 

It was expected to obtain characteristic values of the number of 
waves in a group (Df/f(p)), taking into account the grouping factor 
GF, These values would allow to evaluate the transfer function Gnm 
between the short waves and the long set-down wave. However, the 
authors were not able to find a good correlation between the 
parameters GF and (Df/f<p>) 

The comparison between the values of T<z)(SIWEH) or T(z)(OLW) with 
T(z) <0S¥) has not given a high level of correlation. There seems to 
be a tendency to show increasing values towards the storm peak, and 
then decreasing slowly . The correlation between T(z) (OLW) and 
Tz(OSW) was found to be somehow better in the following way : 

Tz(SIWEH) = 6.6. T(z,s) (OSW) ; R* 0.42 

This expression is close to the value of the parameter fp/Df 
as found in Sedivy (Sand, 1982 a). 

5, 

However, a certain value was systematically found for Tc(SIWEH) 
covering the range of 40-70 seg, coincident with the second spectral 
peak interval. 
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Fig.5,- Energy Spectra : A) SI¥EH for the Outside waves (OLW) 
B) Inside Long Wave (ILW). 

When the SIWEH was smoothed by using a nine bands moveable 
rectangular window, the first spectral peak showed within the 250-350 
sec. range, with other peaks within the ranges of 100-150 seg, and 
40-50 seg. These results might indicate the existence of a main 
grouping period for the set-down, around the 40-50 sees, together 
with higher groupings, related to the subharmonics, being the latter 
responsible for the most important energy peaks in the SIWEH. Thus, 
the set-down should be understood as a wave family which is able to 
cause harbour resonance for some characteristic periods. 

The ILW spectra show a well determined structure, with the maximum 
spectral peak in between 280 and 366 sees, and other peaks which only 
appear under storm conditions, around 40 and 180 seconds, 
respectively (fig.5a> 

4.- MODEL TESTS 

Different model tests were carried out for Bilbao Harbour (with 
regular and irregular waves, and also with moored ships). Some 
aspects of interest, related to the above mentioned long wave 
analysis performed in prototype, are presented hereafter, An 
undistorted scale 1:150 was used. 

4.1.- REGULAR LQHG WAVE MODEL TESTS 

The purpose of these tests was to obtain a broad and detailed 
information of the resonant behaviour of the different harbour 
basins. The wave period range tested was from 30 s.< T < 300 s. 
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4.1.2.- METHODOLOGY 

The two main basins were filled with fluorescent cork spheres in 
order to observe the general way of oscillation of the two basins, 
for each exciting wave period. Maximimum horizontal and transversal 
peak to peak water displacements, near the berthing places, were 
measured in detail, for the outer and inner harbour basins. Also, the 
existence of vortexes was remarked. Additionally , surface water 
displacements were measured in other points of interest alongside the 
berthing places. A very detailed information on the behaviour of the 
two basins was elaborated, remarking the bollard numbers at which 
characteristic water displacements were observed. 

It shoud be remarked that , although wave periods were calibrated, 
wave heights were estimated visually. Therefore, the measurements of 
water surface displacements should not be understood quantitatively, 
since long waves could not to be defined exatively by any known 
characteristic parameter such as the Ursell parameter. 

4.1.3.- AHALYSIS OF RESULTS 

The results were analyzed in two ways : 

A) Representing in a plan view of the harbour <Fig.6A) the 
observed displacements in front of their corresponding bollards 
(crossing bars) .together with the interpolated displacements in the 
bollards were no measurements were taken (white bars). Even though 
the spatial amplitude displacement distribution is sinusoidal , a 
linear distribution was adopted for comparative purposes. (Figs. 6b 
and c). The theoretical positions of nodes (yo : main; x> : first; 
X* : second) were also indicated in the aforementioned figures, for 
each exciting wave period, using the simplificative formulations for 
rectangular basins. 

In regard to the use of the above mentioned simplificative 
assumptions for rectangular basins, the following conclusions were 
drawn , after analyzing the behaviour of the two basins in the 
present physical model; 

- The inclination of the quay called "Muelle Adosado", located at 
the end of the outer basin, induces a reflection of the standing 
wave, which makes the inclined basin behave in a different way than a 
rectangular one. Two interesting aspects should be pointed out ; 

- The antinode does not clearly appear in the vertical wall, at 
the basin end , due to the existence of horizontal water 
displacements in the direction of the inclined quay , caused by the 
above mentioned reflective effect of the standing wave, 

- The section reduction at the change of alignement, in the inner 
main basin, causes an increment of the horizontal velocities of the 
standing wave. This effect is increased by the relative closeness of 
the first oscillating node. 

B) Representing the maximum horizontal displacements (peak to peak) 
against the exciting wave periods (within the range of 30-300 sees), 
for the two main harbour basins. 
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on 

Fig. 6,- Physical Model ; a) General Lay-out. 

Fig.6.b&c- Example of Horizontal Water Displacements Parallel 
to Quays :  b) Outer Baaiail = 250 s.), c) lanex Basin (T = 200 s.) 
I mm Measured Data. I    I  Interpolated, LLLLLL Perp. displacement 
towards the berthing,  «= Drifting, G.      Vortex, m—m   Theoretical 
node position. 
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Fig.7.- Results of the Physical Model with Regular Waves : 
Max. Horizontal Displacements at the Two Basins against the 
Exciting Wave Periods. 

4.1.4.- MODEL TEST CQHCLUSIQKS 

After analyzing the figures shown in A), the following conclusions 
were obtained, related to the behaviour of the two harbour basins. 

Outer Harbour Basin (Fig.6b) 

It can be seen, from the figures, that the osciLlatory 
displacement amplitude distribution looks like one corresponding to 
a standing or quasi-standing wave, with maximum displacements located 
near the node. 

The "theoretical" resonant period of the basin was found in the 
range of 200-235 seg., depending on the oscilating length adopted 
(from the center of the Adosado Quay , or from the end). This range 
could be extended because of the longer wave standing trajectories 
caused by the reflection in the inclined pier at the botton of the 
basin. 

The above mentioned long wave reflective phenomenum was also shown 
in the model tests, by the transversal displacements experimented in 
the Cara Horte Quay , specially in bollard 5 (see bollard plan). 

Another point to be remarked is the higher displacements found at 
the Princess de Espafia Quay with respect to its opposite one (Cara 
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Rorte). Horizontal displacements up to 75 meters were measured at the 
Princesa de Espafla Quay (bollard 3, near the entrance). Also, a drift 
displacement of 45 m. was observed in that bollard. 

Inner Harbour Basin (Fig.6c) 

The movements observed at the inner basin are significatively 
smaller than those found at the outer basin, and they are also 
distributed more uniformely. 

The largest displacements are found at the change of alignement in 
the inner basin. The reasons for this could be as follows : 

- The oscillation node is close to this area. 

- This change of alignement is coincident with a reduction of the 
transversal section of this basin, which causes an acceleration of 
the confined mass of water. 

- The antinode appears to be located at the end of the basin, 
which does not occur at the outer basin. 

After analyzing the figures explained in B) (Fig.7), the following 
conclusions are drawn : 

The Princesa de Espafla Quay seems to be very sensitive to small 
wave period increments. For instance, for the range of T = 200- 260 
sees.,the horizontal water displacement shifts from a value of 6 m. , 
to the maximun one of 75 m., and then decreases down to 30 m. , 
for the range of T = 260-280 sees, increasing again up to a new 
maximum (52.5 m.), for T = 280-300 sees., showing a decreasing trend 
after it, 

The outer basin shows two distinctive peaks for its longitudinal 
oscillation, for the two parallel quays (Princesa de Espafla and Cara 
Horte ). The firt peak is located near T = 150 sees,, and the second 
peak around T = 240- 260 sees. This second peak induces the largest 
water displacement (about five times more). 

The outer and inner basins show similar trends in longitudinal 
oscillations (two distinctive peaks),  although they both differ 
considerably in the oscillation amplitudes, as it was already 
explained. 

The position of the main oscillating node seems to be a 
significant parameter for the way in which longitudinal water 
oscillations occur at the two parallel piers. The more simmetrical 
location of the main node at the inner basin, due to the lower 
inclination of the quay at the end , makes the two parallel piers 
(Cara Sur and Reina Victoria) oscillate in a very similar way. 

The transversal water movements of the two basins are very small 
compared to the longitudinal ones. 

4.2.- IRREQvLAR WAVE MQPEL TESTS 

After analyzing wave spectra at different harbour areas (Fig,6a>, 
energy transfer was found from the main peak period (TP = 17 sees. ) 
towards much higher periods in the range of 103-310 sees. The fact 
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that the maximum basin amplifications in the regular wave model 
tests are found around wave peak periods of 150 and 260 sees, could 
establish the existence of some kind of resonant effect, around these 
periods, when irregular waves are used in the model. 

It should be remarked that the spectral analysis carried out in 
the model was based on 512 points, which only allow to know the range 
of wave energy transference, without clearly distinguishing the peak 
periods for the long wave. At the present, a more detailed wave 
spectral analysis (4096 ponts) is being performed at the CEPYC 
(Iribarren et al) to distinguish the spectral peaks much better. 
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Fig. 8.- Example of Wave Energy Spectra Obtained in the 
Physical Model: 
a) Outside Waves <P,); b) Same for Santurce Entrance (P2> ; c) Outer 
Basin Entrance (P3); d) Inner Basin Entrance CP^.). (Points shown in 
Fig.6A; max. free. 2 Hz). 

5.- DISCUSSI CM. 

The set-down amplitude has been parametrized by Sand (1982) by 
means of the transfer function G,-.m(D8),h. For the case of deep or 
shallow water, the following asymptotic expressions for 
unidirectional waves (D8 = 0) were found, function of the P 
parameter ( P = SQR(h/g)/TP.) : 

P < . 15 
P > 3 

G,.„„(D8=0).h = ( 3/8.it2 ) . P 2  . (l/(l+Df/fp) ) 
,h = 2 , K

Z
   . ?•'"   . (Df/fp) . ( 2+(Df/fp> ) 

For the case of directional waves (D8 # 0) 
presented in a graphic way. 

the solutions were 



996 COASTAL ENGINEERING—1988 

The considered depth h corresponds to the measurement point of the 
incident waves. However, this transference function grows when 
decreasing water depth, in the following way : 

Gv,• (D6 = 0>.h ( 1 / k* h3 > 

This implies thatset-down will grow with water depth decrease. 
Thus, an increase in the mean water level will be expected in the 
recordings. Comparisons between the results obtained from the 
waverider and those from the Bilbao Port in this zone showed that 
such a variation could not be detected as far as the entrance of the 
inner basin, located at 18 m. water depth. Furthermore, the results 
from the physical model testes seemed to confirm this fact, the peak 
not appearingin the range of 40-60 sees., up to this point. 

The above mentioned findings made possible to estimate the wave 
set-down amplitude for a water depth of 22 m, considered as a mean 
value for the outer zone. 

As for directional waves, a mean value of D8 = 272 was obtained, 
for a directional buoy (wavescan), located outside the harbour (h = 
300 m. >, during December-87 (Arribas and Moron, 1988). A value of D6 
= 202 was adopted, corresponding to the tabulated results showed 
below. The number of waves in a group may be of 5, as considered by 
Sand, whose value is in the order of the data < item 3). The wave 
peak periods, under storm conditions, are within the range of 12 and 
20 sees., and the P parameter results : .075 < P < .125 , which 
corresponds to shallow water conditions. 

In order to evaluate the set-down amplitude, A,-, = A,„ was taken 
which is equivalent to consider two wave amplitudes very close in 
frecuency, and thus creating a wave energy train equivalent to the 
original one, having H„ as a significant wave height. Under these 
conditions, the values obtained for 8/H.»::i were as follows : 

( G,-„„ <D6=0> . h) * Hs2 / 16 h 
Tp=15 
.0106 
.0020 
.0998 

Vhen these values are referred 
prototype, the results are as follows 

P9 T.p=12 
0 .0068 

20 .0018 
P = . 124 

to 

Tp=18 
.0153 
.0022 
.083 

real values 

Tp=20 
.0189 
.0023 
.075 

measured in 

Date 
Pay /, Tine 
4.9.87 14 
10.2.88 11 
25.3.86   3 

Q.S.V 

For small wave heights, H.,(OS¥) <1.5 m. , in position 4a, wave 
heights in the range of 0.02 were detected almost 
continuosly, probably corresponding to the case of a free wave 
generated by the change in water depth at the harbour entrance. 
Taking this fact into account, the measured wave heights ILW obtained 
in position 4b are higher than the calculated set-down, and they must 
correspond to resonant amplifications induced by the set-down. Wave 
spectra obtained from the physical model show similar tendencies. 
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If wave spectra at the entrance of Basins 1 and 2 are compared to 
the wave spectrum considered as "exciter"(Figs. 6a and 8), the peak 
corresponding to the long wave appears in the range of 50-250 sees., 
growing towards the end of the basins. 

Therefore, it seems possible to confirm the hypothesis that the 
set-down is amplified by resonant oscillations, although not in its 
principal mode, but in the subharmonic ones whose periods are close 
to the natural periods of the basins studied . That is way the peak 
period of waves at the end of the basins grows simultaneously with 
the decrease of the total energy, acting the set-down, because of its 
second order characteristics, as an energy transfer . 

6.- GQKMSOTS 

1) The mechanism of set-down comes out as a wave packet whose 
frecuency distribution corresponds approximately with that adopted 
by the SIWEH spectrum outside the harbour, being able to generate 
resonancies according to its frecuency band. 

2) Set-down generates an energy transfer from the usual wave 
frecuencies towards lower frecuencies, producing an increase of the 
peak period, altogether with a general decrease of the total energy. 
In the present case, a decrease around 7-9% for Tf,, coincident with a 
decrease for H,„ of 90-92%. has been detected 

3) Calculations of statistical parameters carried out from the 
SIWEH have only permitted to obtain an imprecise idea of the number 
of waves in a group, as well as of the main set-down period, from the 
T(z,s) and T<= parameters, respectively. 

4) SIWEH spectrum shows approximately the existence of several 
waves, corresponding with the set-down subharmonics. Furthermore, 
SIWEH spectra peaks coincide with bands of accused energy detected 
for Long Wave spectra analyzed at the end of the basins, thus being 
the probable origin of resonances depending on the natural periods 
of the basins. 

5) The resonant modes detected in the physical model, using 
regular waves, show in a semiquantitative way, the existence of 
amplitudes of a certain importance, for the horizontal water 
displacements in the outer harbour basin whereas the inner basin is 
less susceptible to resonances, 

6) The model tests with regular waves have allowed to study the 
behaviour of the outer and inner harbour basins, analizing the 
response of those basins with respect to a large range of wave 
exciting periods. In the neighbourhood of the natural modes of 
oscillation, the amplification grows rapidly and resonant effects may 
appear , even with energies not being exactly in the natural 
frecuency of oscillation. The non strictly regular geometry of the 
basins fosters the lack of a well determined frecuency of oscillation 
but a relatively narrow frecuency band where resonant effects could 
be developed under severe storm conditions. 
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