
CHAPTER 70 

COMPARISONS OF NUMERICAL RANDOM WAVE SIMULATORS 

by Josep R. Medina1, M.ASCE, and 
Carlos R. Sanchez-Carratala 

ABSTRACT 

A review of unidimensional numerical random sea 
simulators is provided, centering the attention on the 
measurement of distortions introduced by the different 
simulation techniques. Simulators by wave superposition 
are analyzed, with the conclusion being that they generate 
significant distortions on the realizations when the 
number of simulated points are larger than two times the 
number of wave components. Composed simulators are 
proposed for the purpose of generating long non-periodic 
realizations using FFT algorithms. 

In order to qualify simulators, a justification, 
based on physical properties of random waves, is given to 
use mn> m1» Qp and mo as the best spectral parameters to 
characterize processes. Mean values and variabilities of 
wave heights and periods are controlled by these 
parameters. A new robust technique is developed to 
estimate the parameters of an AR(p) model corresponding to 
a given target spectrum, S 77 ( f ). MA(q) and ARMA(p,q) 
approximations are studied. The source of pseudo-random 
numbers to generate the input white noise has a critical 
impact on the  statistical properties of the output. 

INTRODUCTION 

Numerical random sea simulation techniques of 
stochastic processes defined by a continuous variance 
spectrum are used to solve numerous coastal and ocean 
problems. Numerical descriptions in time of the sea 
surface is a basic input of a variety of design methods in 
maritime engineering (Goda, 1985). On the other hand, 
given the increasing quality of the servo-control 
mechanisms for wave generation in laboratory, numerically 
synthesized records are also the input of most modern wave 
generators for physical modelling (see Funke and Mansard, 
1987).      Therefore,       the   numerical   and   physical   experiments 
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are    the    two   main   areas   of   application   of   numerical   random 
wave    simulators. 

From the earlier papers of Borgman (1969) and Goda 
(1970), which showed engineering applications of linear 
simulators, a variety of random wave simulation approaches 
have been used in different numerical experiments. 
Hudspeth (1974) utilized a nonlinear simulator to predict 
wave forces on piles. Goda (1977) studied the statistical 
variability of ocean waves by analyzing the results given 
by a linear directional simulator. Hudspeth and Chen 
(1979) used linear and nonlinear unidirectional random 
wave simulators for the dynamic analysis of multilegged 
pile-supported ocean structures. Goda (1981) employed a 
linear directional simulator to study the directional 
resolution of different estimation techniques of 
directional spectrum. Goda (1983) and Elgar et al. (1984, 
1985) used linear simulators to compare sea wave group 
characteristics of synthesized records with field 
measurements. 

On the other hand, Funke and Mansard (1987) described 
a number of wave generation techniques in physical 
modelling, pointing out conceptual differences among wave 
generators and also the distance between numerical and 
physical simulations. However, most modern laboratory wave 
generators use numerically simulated waves as input of the 
servo-control element. Therefore, a first level of 
distortions is associated with the simulation technique 
itself and can be analyzed testing the corresponding 
numerical   simulators. 

Tuah and Hudspeth (1982) compared linear and 
nonlinear NSA and DSA FFT simulations; the result was that 
NSA synthesized records showed better statistical 
characteristics. Medina et al. (1985) gave a systematic 
contrast of linear simulators by wave superposition, 
pointing out the distortions induced by each simulator. 
Miles and Funke (1987) analyzed the limitations of the 
available numerical simulation techniques, which may be 
overshadowed in physical experiments, as a previous step 
to the installation of a multi-mode segmented wave 
generator   at    the   NRC   Hydraulics   Laboratory. 

This paper analyzes the different linear simulation 
techniques based on wave superposition, and also analyzes 
ARMA models to synthesize records by filtering white noise 
in the time domain. General criteria for qualifying 
simulators are given to rationalize the selection of a 
simulator for a given application. Finally, new AR 
simulators of low order and composed synthesizers are 
introduced with efficient methods to generate non-periodic 
realizations   via   FFT   algorithms. 

NUMERICAL   SIMULATORS 

Borgman (1969) pointed out the two main methods of 
generating realizations corresponding to an ergodic 
Gaussian   process   defined   by   its   variance   spectrum,   Sn(f). 
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The wave superposition method generates realizations by 
addition of sinusoidal functions with amplitudes and 
frecuencies in accordance with S„(f) and random phases. 
The filtering of white noise produces realizations by 
passing a white noise through a linear filter, the 
transfer function of which is on a par with S„(f). The 
extension of the unidimensiona 1 simulation to 2D can be 
easily implemented by using wave superposition. However, 
said extension requires the design of new filters to 
propagate the simulations in the space by using white 
noise filtering (see Samii and Vandiver (1984)). Miles and 
Funke (1987) have studied the extension of the 2D 
simulation techniques to the 3D. 
*   Wave   Superposition   *_ 

The    linear    simulators   by   wave    superposition   describe 
the   vertical   displacement   of   the   sea   surface   by   addition 
of   sinusoidal   waves: 

M 
i7(nAO=zn=2Rmcos(277fmnAt + 0m);     0<f    <l/(2At) (1) 

m=l 

in   which   r/(nAt)   is   a   random   time   series   of   the   ensemble 
corresponding    to   the    stochastic   process,    discretized   at 
time  intervals At;  M  is   the     number  of  wave  components,  R ' ^ '      m 
and   f       are    the   amplitudes   and   frecuencies   calculated   from 
the   wave   spectrum   of   the  process   as 

Rm/2 = Vfm>Afm;     0<fm<l/(2At) (2) 

where Af is the frequency interval related to the 
frequency component fm; and ^« ( f m ) ^ s the variance 
spectrum characterizing the ergodic Gaussian stochastic 
process to be simulated. The real spectrum of the 
realization generated with Eq.l is 

M 
S„(f )=£ (R^/2)S(f-fm);    0<fm<l/(2At) (3) 

m=l 
in   which   8(f)   is   the   Dirac's   Delta   function. 

Medina et al. (1985) analyzed a five step method for 
creating simulators by wave superposition; each step 
generates distortions on the results in the following 
manner: first, the target continuous variance spectrum, 
S« (f), needs a cut-off frequency lower than the folding 
frequency imposed by the aliasing phenomenon 
(fmax<1/(2At)). Second, the linear assumption permits one 
to divide the target spectrum in M band spectra. Third, 
each band spectrum is substituted by a regular wave 
component with a frequency in the frequency band and an 
amplitude related (deterministically or non- 
de terminist ically) to the variance of the band spectrum. 
Fourth, a pseudo-random number generator will provide the 
random basis of the Monte Carlo experiment. Finally, 
efficient numerical algorithms can reduce the 
computational time which indirectly affects the quality of 
the simulator. According to Medina et al. (1985) 
simulations should be non-periodic, non-deterministic and 
should fit reasonably the spectral characteristics of the 
target    spectrum.    A   general    plan    to    qualify    simulators, 
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given     below,      allows     one     to     select     the     appropiate 
simulators   from   the   large   number   of   methods   available. 
*_  Filtering   o_f   White   Noise   * 

The second general method to synthesize random 
realizations corresponding to an ergodic Gaussian 
stochastic process is the filtering of white noise through 
a linear filter. The general method is to define an ARMA 
filter, the transfer function of which corresponds to the 
target spectrum, Sjj(f). The au t or egr e s s ive-mov ing average 
model    (ARMA)    is   described   by 

r?(nAt)=zn = -Sakzn_k+wn+|bmwn_m (4) 
k=l m=l 

in which zn is the time series generated, wn is the white 
noise time series with variance a 2 , a k are the p 
aut oregress ive parameters, and b are the q moving- 
average parameters. The model described by Eq.4 is refered 
to as ARMA(p,q). From Box and Jenkins (1976), the spectrum 
of    the   realizations    synthesized   by   the   Eq.4   is 

q 9 
ll+Ib   exp(-jmAt2n-f )| z 

S^(f )-2aw2At |H(f )| 2 = 2a2AtI„3=I_!?         ; 

;0<f<l/(2At) |l+k£iakexp(-jkAt2,rf)|2 (5) 

in   which   H(f)    is   the   frequency   response   function   of   the 
linear    filter,   At    is    the    discretization   time    interval,    o"?, w 
is   the   variance   of      the   white      noise   input,    and   S_ ( f )   is 
the    target    spectrum. 

Taking into consideration that simulators by wave 
superposition tend to generate periodic or deterministic 
realizations of long duration, the filtering of white 
noise avoids these problems. Unfortunately, the 
calculation of the ARMA parameters to fit the target 
spectrum and the source of white noise are elements which 
can   also   produce    large   distortions   on   the   results. 

CRITERIA   TO   QUALIFY   SIMULATORS 

The selection of a numerical simulator (or the 
corresponding physical generator) to carry out a numerical 
(or physical) experiment depends on the available criteria 
to qualify the simulators. To establish a general plan 
for qualifying simulation techniques is essential for 
selecting   appropiate   simulators   for   specific   problems. 

A realization of a process defined by a continuous 
variance spectrum can not be periodic. As a result, 
harmonic simulators should be avoided, including those 
long simulations based on FFT algorithms. On the other 
hand, according to Medina et al. (1985), a sinusoidal 
function can be considered a deterministic autoregressive 
process AR(2) with two parameters and, therefore, the time 
series given by Eq.l only have 2M non-determinist1c 
points. Consequently, the length of simulations by wave 
superposition should be limited to 2M points. Finally, the 
simulated process should have spectral characteristics 
which are similar to the target process. A number of 
opinions    and    parameters    have    been    given    and    it    is    not 
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clear what the best parameters are for characterizing 
target spectra. 
—   Suitable Spectral Characterist ics * 

What are the most appropiate spectral parameters to 
characterize variance spectra?. This question has not as 
yet been answered and the solution probably depends on the 
engineering application in which the spectral description 
is used. However, some properties of random signals can be 
taken into consideration to give a reasonable answer. 

If Tf( t ) is the sea surface elevation with the 
 ^  ^^(f), the spectral moments are defined as 

fmax 
fnSv(f)df (6) 

min 
and    therefore,     the    variance    of    the    vertical    displacement 

2 of   the   sea   surface,    rj(t),    is   u. =HQ;    the   variance    of    the 
vertical velocity, r) ( t ) = d»j ( t / / d t , is CTJ

2
 = ( 2 n ) 2 m 2 ; the 

variance of the vertical acceleration, r;(t) = d )?(t) I dt , is 
(X~=(2Tr) m,; the mean period of the orbital movement of sea 
surface is TQ^in^/m,; the mean zero-up-crossing period is 
TQ2 = (m„/m2) ,     and    the    mean    c r e s t - t o - t r o u gh    period    is 
T24 = *-m2^m4' Other   mean   periods   can   be   defined   although 
no    easy    physical    interpretation    can   be   given. 

According to Blackman and Tukey (1959) the 
variability of the variance of the process depends on the 
spectral peakedness. Using the dimension 1ess spectral 
peakedness parameter Qe, given by Medina and Hudspeth 
(1937) 

!-(:_r_n_!\(.__Q.e_/_!.)i/2 (7) 
E(zrms)       NAt/T01 

in   which 

,    /.fmax, 
Qe=(2ml/m£)J      S^(f)df (8) 

^min 
Therefore, the spectral moments are not the only 

parameters necessary for defining the stochastic 
properties of the simulations. As noted by Medina and 
Hudspeth (1987), the dimension1ess spectral peakedness 
parameter Q is not only related to the variability of the 
variance, but also to the wave grouping characteristics. A 
general order of parameters can be suggested for the most 
common   applications: 

1.- The most important parameter is the total variance of 
the process, <rn=iQ. This parameter controls the 
magnitude of wave heights, which have a major impact 
on   most    engineering   applications. 

2.- Fixed (L =mn, the first moment, m , , determines the 
mean period of the orbital movement of the sea 
surface, Tg,=nig/m,. The mean wave periods are 
probably the second most important variable for 
maritime    engineering       applications. 

3.- Having characterized the mean values of wave heights 
and periods by 1Q and ij, the third most important 
parameter    should    control    the    variability    of    variance. 
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The dimension less spectral peakedness parameter Q , 
shown in Eq.8, can characterize the variability of 
variance. This variability is also related to wave 
groupiness, variability of significant wave height, 
and other basic sea state parameters. 

4.- The fourth most important parameter can be the second 
spectral moment, ij, because the variability of 
periods tends to be dependent on the parameter 
v= (niQiiij /m j -1 ) given     by     Longue t -Higg ins     (1975). 
Hudspeth    and    Medina    (1988)    give    stochastic    properties 
of    the    instantaneous    frequency   as   function   of   v. 

SIMULATION   BY   WAVE   SUPERPOSITION 

Using the criterion of non-periodic realizations, the 
Goda's (1970) and Borgman's (1969) simulators could be 
considered more suitable than the harmonic DSA and NSA 
simulators given by Tuah and Hudspeth (1982). However, the 
criterion of non-deterministic realizations would only 
permit one to use those non-harmonic simulators for short 
realizations (2M points), while DSA and NSA simulators can 
generate large non-deterministic realizations with the 
same computational time. The non-periodic realizations 
obtained from non-harmonic simulators by wave 
superposition progressively distort the stochastic 
properties   when   the   number   of   simulated   points increase 
by   more   than   211. 

The periodicity of DSA and NSA FFT simulations can be 
avoided by modulating the simulations by a basic 
frequency, fn, non-harmonic of Af=l/(NAt). However, the 
envelopes of these simulators are periodic NAt , a fact 
which is also an undesirable characteristic. By composing 
non-harmonic FFT simulators it is possible to get non- 
periodic realizations with non-periodic envelopes of an 
indefinite   length. 

Goda (1977, 1981), and Miles and Funke (1987) present 
different aspects of the extension of simulators by wave 
superposition to 3D. As noted by Goda (1977) and Medina et 
al. (1985), the addition of many waves with the same 
frequency and random phases in directional simulation 
generates random unidimensional realizations given by 
Eq.l, but the amplitudes are non-deterministic, and can be 
modelled   by 

Rm2/2 = (Cln/2)Sr?(fm)Afm=-ln(Um)Sv(fm)Afm; 
;m=l,2,...,M (9) 

instead of the deterministic relation given by Eq.2. U 
and C are random variables uniformly and chi-squared 
distributed with two degrees of freedom. The Eqs.2 and 9 
correspond to the relation between DSA and NSA simulators 
described by Tuah and Hudspeth (1982). The simulators, 
based on Eq.9 instead of Eq.2, are also named "random 
Fourier coefficient" (RFC) methods to diferenciate them 
from the "random phase" methods (RP) used by Miles and 
Funke (1987). DSA (RP) simulators via FFT can be modified 
to generate non-harmonic simulations. Considering ocean 
spectra are zero for low frequencies, one can select a 
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basis    frequency    ,    fg,    non-harmonic    of   Af=l/(NAt)   and    t 

M 
>7(nAt) = z   = £R   cos( 2^(f0+fm)nAt+5m )= 

m=l 

-sin( 2 7rf 0 )S'n) = XRm(cos(2n-f0); 
m=l 

tfhich 

and 
s lmu 
ins t 
give 
have 
s lmu 
enve 
and 
FFT, 
enve 

m=l 
the   Hilbert    transform    of 

hen 

(10) 

lated   by   Eq.10, 
'n- The time    s e 

have   longer   periods   than   NAt. 
realizat 

n by Eq.10 is 7 NAt ; however, the realizations w 
envelopes with a period of KA t. The compositio 

lators enlarges the period of time series 
lopes. By taking several non-harmonic frequencies 
composing simulators, it is possible to generate, 
almost non-periodic realizations with non-peri 

lopes. 

ance,   if   f0 = (5 +1/7 ) Af ,   the   period   of   th 

(11) 

r i e s 
For 

ions 
o u 1 d 
n of 
and 
f0 
via 

od ic 

The simulators by wave superposition fit the spectral 
characteristics well. Periodicity and deterministic 
behaviour can be studied by analyzing the variability of 
the variance of long simulations. Fig.l shows the 
representation   of    the    C.V.    of    z calculated    from    forty 
realizations   using   DSA   and   NSA   simulators   and   the   method 
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proposed by Borgman (1969) with different number of 
components. DSA simulations have unrealistic low 
variabilities when N approximates to l/(AfAt) while NSA 
simulators have variablities as predicted by linear 
theory, up to the full period of simulation. Borgman's 
simulator only gives reasonable variabilities if the 
number of components is large in comparison with the 
number   of   points   in   the    simulations    analyzed    (M>N/2). 

FILTERING   WHITE   NOISE 

The filtering -of white noise generated by Eq.4 can 
theoretically produce indefinitely non-periodic and non- 
deterministic realizations with a prescribed variance 
function, by only taking the appropiate ARMA parameters to 
fit the target spectrum according to Eq.5. However, these 
simulators have two critical points: the source of white 
noise   and   the   method   to   determine   the   ARMA   parameters. 

The  spectrum  of   the  output  of  the  linear   filter   given 
q.4    is     the    square    of    the    absolute    value    of    the 

AR(p) 

If   only   the   autoregressive   parameters   in       Eq.4   are 
considered,    the   process   is   then   described   by 

r,(nAt) = zn = -Iakzn_k-1-wn (12) 
k=l 

and   the   spectrum   of    the   output    is   related    to   the   set    of 
parameters   by 

S„(f)= — —; 0<f<l/(2At) (13) 
|l+£avexp(-jkAt2n-f ) |2 

1  k=l 
in which a^ are the p autoregressive parameters. Holm 
and Hovem (1979) presented a method for describing sea 
states by an AR filter with 15 to 30 parameters, while 
Houmb and Overvik (1981) proposed the inclusion of a fixed 
MA parameter to a basic AR(34) model. 

Spanos and Hansen (1981), Spanos (1983), and Spanos 
and Mignolet (1986) have analyzed different methods to 
calculate the AR parameters corresponding to a known 
spectrum. The equations of Yule-Walker can be derived from 
Eq.12 which leads to the corresponding Toeplitz matrix 
equation system. For JONSWAP or PM spectra, the solution 
of this system gives a spectrum with correct spectral 
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is the folding frequency. This relation is not 
d by the PM spectrum and although Spanos (1983) 
a sophisticated method to improve the solution by 
ated spectral shapes, Spanos and Mignolet (1986) 
d that  it "is not permissible  to determine a 
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Fig.2:    Classic   AR   approximation: 
Typical    target    and    AR    spectra;     c)    Values 
At f   = 0 . 1;     and    d)    Values     of     ge    with    p = 100.     The    target 
spectrum    is    JONSWAP   (N=1024,    y=l,    fp = 0.1    Hz,    fmax

=1/(2At)) 
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reliable AR representation of the PM spectrum in a 
straight forward manner"; and they consequently proposed 
ARMA   models   for   simulations   of   ocean   spectra. 

From Eq.14 it is easy to infer that the instability 
of the AR model is generated by the frequencies with low 
energy. A simple method for eliminating the zeros in 
S„(f) is to add a very low level of white noise to the 
process which is to be simulated. The addition of a white 
noise with a variance of 0.1% to 0.3% of the total 
variance can solve the instability problem and generate an 
admissible level of distortions in simulations because 
larger noise intensities are always present in Nature and 
Laboratories for most common ocean engineering 
applications. The consideration of a very low level of 
white noise on the target spectrum (whose variance is 
detracted first from the spectrum) before the calculations 
of AR parameters using Yule-Walker equations will be 
refered   to   as   the   proposed   new   robust   method. 

Fig.2-a shows the map of relative errors of the 
peakedness parameter Qe> which is sensitive to 
fluctuations around the target spectrum. The map of 
relative errors of Q , £ , shows a region of instability 
in which small differences in parameters or variables of 
simulation can critically change the simulator. The 
relative   error   £      is   defined   as 

ee=(?e-Qe)/Qe (15) 

in which tj is the spectral peakedness parameter 
corresponding to the fitted AR approximation. Although the 
errors of the target spectral moments are low, these 
simulators show very large errors of Q. Fig.2-b shows a 
typical   AR   spectrum,   as   compared   to   the   target   spectrum. 

On the other hand, Fig.3-a shows the map of errors of 
6 for the proposed new robust method, adding a white 
noise of variance 0.25% IDQ to the target spectrum. The new 
AR approximations are stable and much better for higher 
order p. The new errors of spectral moments m, and in, are 
less than 1%, if f A t > 0.1, and show a monotonic decreasing 
behaviour with p and £ At. Therefore, the proposed new 
method to determine AR approximations can be considered 
superior to the classic method, and it is applicable to a 
variety   of   ocean    spectra. 

MA(q) 

Taking only the moving average parameters in Eq.4, 
the   MA(q)   model   is   described   by 

«?<nAt) = zn=wn+2bmwn_m (16) 
m=l 

The    spectrum   of    the   output    is    then 

3 o 
S„(f )=2a2At| l + £bmexp(-jmAt2jrf )|     ;     0<f<(l/2At) (17) 

m=l 

in    which bm are    the    q    moving    average    parameters. 
Kimura    and    Kimura    (1987)    have    presented    a    method    to 
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which 5 ^ is the discrete Dirac's Delta function, 
bg=l using Eq.16 for the MA(q) model. The proposed 
hod by Kimura and Kimura (1987) is equivalent to the 
ving of the equations of Yule-Walker and to the 
ermining of the MA parameters, using Eq.18. The 
ameters of the AR(q) model corresponding to S„(f) are 
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the same as the parameters of the MA(q) model fitted to 
1/S^(f), which is the inverse filter of the MA(q) model 
fitted to S,j(f). Eq.18 reflects the relations between the 
parameters of these two inverse MA filters. 

model based 01 
white noise. The 
with the corresponding relative errors"of m,, £,, and m?, 
£2, as well as with the relative error of Q  for the AR(q) 
model taken as basis. 

n £e-MA(q) 

• E,-MA(q) 

+ £2-MA(q) 
o £e-AR(p) 

^W, "*••••"* t"r4-i#m»y»i.» fr. tr-t^--»^*--^--t 

Fig. 
new 
are 

4: Errors 
robust AR 
compared 

£e>   ely   e2 of 
model with 0 
with the £ 

no 
p.q 
MA 

25% 
of 

spectrum    is    JONSWAP    (N=1024, 

W=1/<2At»» 

60 

approximation based on the 
of white noise. The values 
the    AR    model.     The    target 
At=1.0 s, y=l,  f =0.1 Hz, 

ARMA(p.q) 

Spanos  and  Mignolet  (1986)  have  proposed  two 
alternative procedures to obtain the, unknown coefficients 
Jk and bm in Eq.5 to fit the target spectrum. ,(f). The 
methods are based on the work of Samaras et al. (1985) and 
Graupe et al. (1975). 
—  Aut°/Cr°ss-Correlation   Matching    (ACM)   * 

This method is based on a first representation of the 
process by an AR filter, followed by the equalization of 
the autocovariance of the output and the cross-covariance 
of    input-output. 



NUMERICAL RANDOM WAVE SIMULATORS 953 

*_   Power Order Matching (POM) *_ 
This technique is based on the equalizing of the z 

powers of the transfer functions of the ARMA and AR model, 
which is used as the basis. It can be shown that this 
method is equivalent to matching the cross-covariance of 
input-output of the AR and ARMA approximations for i=0 to 
p + q. 
* Evaluation of ACM-POM *_ 

The quality of these simulators depends on the AR 
approximation used as basis. Spanos and Mignolet (1986) 
show good ARMA approximations ACM(7,7) and POM (8,8); but 
those results were based on special satisfactory AR(IOO) 
model which used a Taylor expansion aproximation of the PM 
spectrum. The models proposed by Spanos and Mignolet 
(1986) are only valid for a specific spectrum and for 
simulation characteristics (At, p, and q). Changes in At, 
p, and q can produce unsatisfactory results. 

Using the proposed new robust technique to estimate 
the AR(m) approximation, the ACM and POM methods have been 
applied to a JONSWAP spectrum (y=l, fp=0.1 Hz, f At=0.1). 
The results for p=q show local good approximations that 
can not be generalized for different target spectra. 
Larger orders of filtering do not generate better filters. 

CONCLUSIONS 

After analyzing and contrasting different 
unidimensional numerical random sea simulations, the 
following    conclusions    can   be    stated: 

1.- The stochastic properties of simulations by wave 
superposition are distorted when the number of points 
of the simulations are larger than two times the 
number    of   wave   components. 

2 . - Composing modulated DSA simulators, efficient 
non-harmonic   realizations   via   FFT   can   be    generated. 

3.- The spectral parameters nin, m , , Q , and m 2 have been 
analyzed, justifying this rational sequencing of 
parameters to characterize the appropiate spectral 
shapes. They are related to mean value and variability 
of   wave   heights   and   periods. 

4.- A new robust method for determining the AR(p) model 
for a given target spectrum is given. The method is 
based on the addition of a very low level of white 
noise to the target spectrum and then the solving of 
the   Yule-Walker   equations. 

5.- The MA(q) and ARMA(p,q) approximations to the basic 
AR(m) model have been analyzed. The MA(q) are 
compet i t ive. 

6.- Simulators by filtering white noise are quite 
sensitive to the spectral characteristics of the 
method used for generating the white noise time 
series. 
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