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WAVE GROUP ANALYSIS BY THE HILBERT TRANSFORM 
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ABSTRACT 

A methodology based on linear theory is presented for analyzing wave 
groups from a random sea representation in the complex plane. A wave 
height function [H(t)], a local frequency function, [0(t)] , and an orbital 
velocity function [V(t)] are defined from the Hilbert transform of the sea 
surface elevation. Envelopes computed by the Hilbert transform are com- 
pared with the SIWEH. A three axes representation of the mean lengths of 
runs of waves is employed to compare the lengths of runs computed by the 
discrete wave method with runs computed by the Hilbert transform method. 

INTRODUCTION 

The presence of groups of waves in random seas and the corresponding 
variability of setdown along the coast can produce low frequency reso- 
nances in the coastal zone (see Battjes (1988) and Bowers (1988)). Tucker 
(1950) noted that long waves nearshore were caused by wave groups. Since 
Goda (1970) demonstrated that random ocean waves have a natural tendency 
to form groups of waves that are larger for more peaked spectra, a variety 
of observations and theories of wave groups for engineering applications 
have been developed. 

Engineering Interest 

Hsu and Blenkarn (1970) pointed out that slow drift oscillation of 
vessels and mooring forces are related to the sequence of waves in random 
seas. Ewing (1973) noted that ships can capsize or be damaged by severe 
motions caused by high wave groups. Johnson et al. (1978) and Bruun 
(1985) described how wave groups can have a significant affect on the 
stability and behavior of rubble mound structures. 

Barthel et al. (1983) observed that wave groups generate second order 
long waves in wave flumes when random wave generators are used. Medina 
and Hudspeth (1987) showed that wave grouping characteristics are strongly 
related to the statistical variability of the sea state parameters and, 
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therefore, the uncertainty of wave climates estimated from records can be 
influenced by wave groupiness. Burchart (1979) and Longuet-Higgins (1984) 
introduced the concept that wave grouping characteristics in random seas 
is a significant design element that should be taken into consideration 
in the design of coastal and ocean structures. 

Theories 

Although Rice (1954) provided a compact theory for an analysis of the 
envelopes in random signals and Tucker (1950) demonstrated the importance 
of the groups of high waves in the generation of coastal long waves and 
harbor resonance, Goda (1970) was the first to give a simple methodology 
for analyzing the presence of wave groups in random seas. Goda (1970) 
introduced the length of runs of waves to measure wave groups and defined 
a spectral peakedness parameter, Q , which indicated that larger wave 
groups are associated with higher values of Qp. The basic Goda methodology 
has been the most widely used to analyze wave groups from real ocean 
records. 

Nolte and Hsu (1972) and Ewing (1973) proposed to analyze wave groups 
by an envelope function. Funke and Mansard (1979) introduced the Smoothed 
Instantaneous Wave Energy History (SIWEH) method and an associated Group- 
iness Factor, GF, to characterize wave groups. Kimura (1980) proposed a 
Markov chain model to predict the probability density function (pdf) of 
the length of runs. Goda (1983) found that observations of long-travelled 
swell waves in the Pacific Ocean agreed quite well with the Kimura theory. 
Battjes and Vledder (1984) also observed that wave groups in the North Sea 
were in agreement with the Kimura predictions. 

Longuet-Higgins (1984) employed the envelope theory of Rice to demon- 
strate the similarities between the formulas given by Kimura (1980) for 
discrete waves and those given by Rice (1954) for envelopes. Medina and 
Hudspeth (1987) demonstrated the similarity between the SIWEH method and 
the square of the envelope. They also found that the Goda peakedness 
parameter, Qp, and a new parameter, Qe, provided a relationship between 
the variability in the variance of the time series and the spectrum of the 
envelope. 

Linear Assumption 

Rye (1982) provided a lengthy review of the methodologies and 
observation of wave groups in random seas and concluded that all of the 
significant characteristics of wave groups in records of sea surface 
elevation could be obtained from the variance spectrum. The linear 
hypothesis of wave groups was also supported by the results of Elgar et 
al. (1984, 1985) for water depths greater than 10 meters. These 
observations and those provided by Battjes and Vledder (1984) justify the 
assumption that the linear hypothesis can correctly analyze wave groups 
from one-dimensional records in deep water. 

If we assume that wave groups in random seas may be analyzed by an 
ergodic Gaussian stochastic model, then the corresponding variance spec- 
trum contains all of the information required. Medina and Hudspeth (1987) 
proposed to analyze random waves in the complex plane by using the Hilbert 
transform to describe the orbital movement of points in the sea surface. 
They introduced a wave height function, H(t), a local frequency function, 
0(t), an orbital velocity function, V(t), and other functions to describe 
random waves in the complex plane. Here we examine the stochastic proper- 
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ties of some of these functions and introduce some new techniques to 
characterize wave groups from real ocean records. 

WAVE ENVELOPE ANALYSES 

Assuming that the vertical displacement of a point in the sea 
surface, i;(t), is a realization of an ergodic Gaussian process defined by 
its one-sided variance spectrum, S^(f), it may be approximated by 

M 
r/(t) = Y R cos (2>rf t + $   ) (1) 

*%  m    v  m    m v ' 
m-1 

where M - the total number of discrete Fourier components; R,,, and fm - the 
amplitude and frequency of the "mth" wave component, respectively; and Bm 

- a random phase angle uniformly distributed in the interval U[0,2?r]. 
Tuah and Hudspeth (1982) and Medina et al. (1985) used the following 
relationship between the amplitude and the variance spectrum: 

R2 = C S (f ) Af = -2 In (U ) S (f ) Af  ; m - 1, 2 M  (2) 
m   m r)    m   m m  r\    m   m 

where Um = a random variable uniformly distributed in the interval U[0,1]; 
Cm = a chi-squared random variable with two degrees of freedom; and Afm - 
a discrete frequency interval in the variance spectrum. 

Bendat and Piersol (1986) define the Hilbert transform of f/(t) as 

M M        r i 
fKt) - I R sin (2*ft + t   ) = I    R    cos 2,ft + 9    -  f    (3) ,m       m    m     ,  m    I  m    mzl 

m-1 m=l       *• J 

and an analytic signal or complex-valued function as 

AF(t) - f,(t) + jij(t) - A(t) exp [j(6(t) + <j>)] W 

where j - J^l;   r;(t) = a real signal; I7(t) - its Hilbert transform; A(t) 
- the amplitude of the envelope; and [6(t) + 4>] - a phase angle. The 
Hilbert transform may be implemented exactly in the frequency domain when 
r/(t) is periodic (FFT simulations) and may be implemented approximately 
in the time domain using the optimum Hilbert filters given by McClellan 
et al. (1979). 

A schematic representation of a wave record in the complex plane is 
illustrated in Fig. 1 where f/(t) and i)(t) are the vertical and horizontal 
displacements, respectively, of a point in the sea surface. A wave anal- 
ysis in the complex plane provides definitions of instantaneous functions 
of variables which control the process and which have physical inter- 
pretations. The instantaneous functions of wave height [H(t)], frequency 
[ft(t)], and orbital velocity [V(t)], may be defined as follows: 

H(t) - 2A(t) - 2[r,2(t) + 02(t)]V2 (5) 

"(t) = ^ %.  (ARCTAN [ij(t)A(t)]) (6) 

V(t) - 2n  A(t) fi(t) - JT H(t) Q(t) (7) 

Note that these functions are constant values for regular waves. 
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Fig. 1.  Representation of the Orbital Movement of a Point in the Sea 
Surface. 

WAVE HEIGHT FUNCTION 

It is of interest to compare the envelopes computed by the Hilbert 
transform method with the SIWEH method. 

Funke and Mansard (1979) introduced the Smoothed Instantaneous Wave 
Energy History (SIWEH) method to estimate the low frequency component of 
ij2(t) in their analyses of the slow oscillations of floating structures. 
The objective of the SIWEH filters was to isolate the low frequency com- 
ponents of ?;2(t). Medina and Hudspeth (1987) demonstrated that the 
squared-wave height function, H2(t) - 4A2(t), is the target function which 
exactly isolates the low frequency components of i)2(t) and can be 
interpreted as eight times the instantaneous variance function. 

For linear random waves, r;(t) and »j(t) are independent (see Pinkster, 
1984); A2(t) and H2(t) are chi-squared distributed with two degrees of 
freedom; and, therefore, A(t) and H(t) are Rayleigh distributed with the 
following properties: 

<7[H'(t)] - E[H'(t)] - 8 m. (8) 

E[H(t)] J2n  m (9) 

T[H(t)]  = 7(8 - 2*) m. (10) 

where cr(») - variance; E(«) - expectation operator; and 

0 in    1 
(f)df - ff[ij(t)] (11) 
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From Rice (1954), Nolte and Hsu (1972), Bendat and Piersol (1986), 
and Medina and Hudspeth (1987), the spectra of H(t) and H2(t) are 
approximately given by 

SH(f)  i  (8 - 2*)  mQ r^f)     ;   SH2(f)  = (64 mp  r  (f) 

^(f) l2Jo S   (f+x)   S   (x)dx 
n i 

(12a,b) 

(13) 

where SB - the variance spectrum of H(t); and SH2(f) - the variance spec- 
trum of H2(t); and r,(f) - the spectral density function (unit variance). 

An exact instantaneous variance function, H2(t)/8, can be determined 
for long periodic random realizations by implementing the Hilbert trans- 
form in the frequency domain. In the time domain, an approximate temporal 
Hilbert filter given by McClellan et al. (1979) with 95 points (Pierce, 
1985) can be used. The output, using this approximate temporal filter, 
will be noted by H*,(t)/8. 

The Hilbert filter method is an alternative to the SIWEH method 
introduced by Funke and Mansard (1979) and also to the LVTS method pro- 
posed by Thompson and Seelig (1984). Figures 2 and 3 compare these 
methods for relatively broad and narrow spectra, respectively. Figure 2 
compares the exact FFT [H2(t)/8] and the approximate temporal [H*(t)/8] 
with the SIWEH(t) for an NSA-FFT simulation of a relatively broad-banded 

tions for a relatively narrow-banded JONSWAP spectrum (7 
0.1 Hz). 

10.0 and f„ 

30 

TIME (S) 

£ 
N 
I 

f^25- 
^^si,"),,,,. 

0- \£L f 
0.2       0.4 
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SIWEH (t) 

Fig. 2. Comparison between the SIWEH, the Exact FFT Hilbert Transform 
[H2(t)/8], the Approximate Temporal Filter [H^(t)/8], and i)2(t) 
for JONSWAP (7-I.O, f - 0.1 Hz). 
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Sq(f)/ro0 

0.0      0.2      0.4 
FREQUENCY (Hz) 

Fig. 3. Comparison between the SIWEH, the Exact FFT Hilbert Transform 
[H2(t)/8], the Approximate Temporal Filter [H2(t)/8] , and i)2(t) 
for JONSWAP (7-IO, fp - 0.1 Hz). 

Figure 2 demonstrates that H2 (t)/8 is an excellent approximation to 
H2(t)/8 while SIWEH(t) is a relatively poor estimator of H2(t)/8. However, 
real records are not free of noise and it is necessary to examine the sen- 
sitivity of these methods to external noise. If we define an error func- 
tion e(t) as 

e(t) - 

Hp(t)/8 

SIWEH(t) 
H2(t)/8 /mn (14) 

then the magnitude measured by the standard deviation [c(0] and the cor- 
relation coefficient [rtH] between e(t) and H

2(t)/8 can be used as param- 
eters to indicate the goodness—of—fit of each method. 

Figure 4 compares the mean values of o(e) and reH from 40 realizations 
using NSA simulations and the JONSWAP spectra with 10% (variance) of white 
noise. The average standard deviation [<r(c)] is less than 2% for the tem- 
poral Hilbert filter H^(t)/8 with no noise, but rises to 45% when 10% of 
spectral variance is noise. The SIWEH(t) method using a Bartlett window 
smoothes the envelope giving larger negative average correlation coef- 
ficients reH for lower values of the peak enhancement factor 7 (i.e., 
wider spectra). 
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Fig. 4.  Comparison between Temporal Hilbert Filter and SIWEH for 40 NSA 
Simulations of JONSWAP Spectra with Noise (10% Variance). 

Figure 5 compares the mean and standard deviations of the SIWEH 
Groupiness Factor, GF, with the peakedness parameter, Qe, for 40 NSA 
realizations without noise and with 10% noise. The Groupiness Factor, GF, 
is defined as the relative standard deviation of the estimated variance 
function to the variance of the process. The theoretical lines denoted 
by GF0 ± a correspond to sample spectra of H2(t) that are, approximately, 
chi-squared distributed with two degrees of freedom. For NSA simulations, 
this theoretical approximation tends to underestimate the coefficient of 
variation of GF„. The Groupiness Factor, GF, increases with Q„ indicating 
that there is less smoothing of H2(t)/8 with increasing values of 7. 

U. 

lu?/fl       (1)   (2)    (333)     (5!      (7)        (10)- Y 

_£Ij  Theory 1.0 

C3 

^-533 

NSA (noise »0VI) 

o. 
NSA (noise = 10 V.) 

Qe 

1 2 3 

Fig. 5.  Comparison of Groupiness Factor Computed by Temporal Hilbert 
Filter and SIWEH for 40 NSA Simulations of JONSWAP Spectra. 

Therefore, the SIWEH Groupiness Factor is a parameter that reflects the 
low pass filter characteristics used and the narrowness of the spectrum. 

Figure 6 shows the wave height function estimated for a hurricane 
wave record from Wave Project II using the temporal Hilbert filter pro- 
posed by McClellan et al. (1979) with k - 95. The values between the 
discrete times of the widely sampled envelope time series (AT - 3.2 
seconds) have been interpolated using an FFT numerical technique. As was 
noted by Medina and Hudspeth (1987), the wave height function contains 
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sufficient low frequency information from wave records using a minimum 
amount of data because the larger sampling interval AT has a high enough 
Nyquist frequency to retain the important information from the square wave 
height spectrum, SH2(f). 

Fig. 6. Wave Height Function for a Wave Project II Wave Record Sampled 
at AT - 3.2 sec and Numerically Interpolated via FFT (i)(t) 
sampled at At - 0.2 sec). 

LOCAL FREQUENCY FUNCTION 

The local frequency function defined by Eq. (6) represents the 
instantaneous frequency of the orbital movement of a point in the sea 
surface. 

The variable Q is non-Gaussian, has a large kurtosis, and is centered 
about the mean frequency f01 - !%/!%. However, if the values of fi corre- 
sponding to increasing levels of H are selected, the standard deviation 
of (1 decreases. These preliminary results from the analysis of numeri- 
cally simulated waves indicate an inverse relation between the variance 
of n, o2((l), and the wave height function, H(t). On the other hand, the 
observed mean frequency, Q is approximately f01 = n^/nig, and independent of 
the H level selected. 

Longuet-Higgins (1975) extended the work of Rice (1954) to estimate 
the joint distribution between wave heights and wave periods assuming a 
narrow-banded process. This theoretical derivation used approximations 
for the derivative of the phase angle which are directly related to O(t). 
Considering the definition of H(t) and 0(t) in relation to the complex 
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envelope given by Longuet-Higgins  (1975),   the fluctuation of the orbital 
velocity,   u(t),   may be  defined as 

u(t)  - jr H(t)[fi(t) foiJ (15) 

For a narrow-banded process, the equations given by Rice (1954) and 
Longuet-Higgins (1975) can be transformed to estimate the joint probabil- 
ity density function of (H,u) according to 

p(H,o) - 4m, exp 
H 
8m, fhi a 

exp 
2a2 

(16) 

where the variance of u(t) is 

2   ,„ .2 2 f2 
°v  - (2*> • " f01m0 (17) 

where v2 - (m2m0/mf - 1), and the simplest stochastic model to describe 
jointly [H(t), u(t)] is a stochastic process of two independent variables 
that are Rayleigh and Gaussian distributed, respectively. 

The stochastic properties of H(t) are described approximately by the 
spectra given by Eqs. (12) and (13) and by the exact Rayleigh distribution 
for the variable H. On the other hand, the stochastic properties of u(t) 
can be defined independently of H(t) by a Gaussian process with a variance 
approximated from Eq. (17). 

The spectral density function of u(t) for broad—banded spectra has been 
analyzed from DSA-FFT numerical simulations by comparing it with the 
spectra of V(t) and H(t) where 

V(t) - * H(t) fQ1 + v(t) v0(t) + v(t) (18) 

where V0(t) - 5rH(t)f01 is the narrow-band approximation and u(t) is a 
fluctuating orbital velocity. 

H(t),u(t), and spectral parameters have been calculated from a set 
of 40 DSA-FFT simulations of JONSWAP spectra with y - 1 and 7 - 10 (fp - 
0.1 Hz). The results obtained from these simulations indicate the 
following: 

The fluctuating orbital velocity, u(t), is independent of 
the wave height function, H(t). 

The variance of u(t) [o„] is correctly given by Eq. (17) for 
narrow and wide spectra. However, if u(t) is numerically 
calculated from a time series of the water surface elevation 
sampled with time interval At, the variance decreases when 
At increases (ACT;; < 8% if At < 1/10 fp and 7 < 10). 

The spectrum of u(t) has a positive maximum at zero fre- 
quency and is affected (as noted previously) by the Fourier 
transform of the temporal window At in numerical calculation 
of u(nAt). Sample S„(f) are approximately chi-squared dis- 
tributed about the mean value with two degrees-of-freedom. 
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Figure 7 illustrates the mean spectra of u(t) calculated numerically 
from a set of 40 DSA-FFT simulations of JONSWAP spectra (7=1 and 10, f 
- 0.1 Hz, f_ 4 fD, and At - 0.5 sec). 

0.00 0.25        0.50 

FREQUENCY (Hz) 
Fig. 7. Mean Spectrum of Fluctuating Orbital Velocity from 40 DSA-FFT 

Simulations of JONSWAP Spectra, fp - 0.1 Hz and At - 0.5 sec 
(7-1 and 10). 

Given the variance spectrum of the process, S„(f), a realization of 
H(t) can be obtained using Eqs. (9), (12a) and (13). Using Eqs. (17) and 
(18) and spectra estimated in Fig. 7, it is possible to generate Gaussian 
time series of u(t) independently fromH(t). The local frequency function 
can then be approximated by 

a•  = foi + ^THO) (19) 

The first term of Eq. (19) represents the narrow—banded approximation 
and the second term represents the fluctuating component induced by spec- 
tral wideness. Note that the contribution from the second term decreases 
with increasing H(t). 

RUNS OF WAVES:  THREE AXES REPRESENTATION 

Assuming that successive upcrossings of H(t) at a threshold level h 
are uncorrelated, Longuet-Higgins (1984) estimated the pdf of the length 
of runs based on the envelope to be given by the following: 

P(2V w 
exp 

2\ 

2\ 

(20) 

PW w 
exp 

A 
i\ 

(21) 
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ph] = exp [h
2l 

8m o 
(22) 

in which ]ih and 2ih — the length of run of high waves and total run of 
waves, respectively; p(») = the probability density function, and h = 
threshold level. Run lengths calculated from both a succession of dis- 
crete waves and from the envelope could follow the exponential model 
because of the similarities found between the formulas given by Kimura 
(1980) for discrete waves and by Rice (1954) and by Longuet-Higgins (1984) 
for the envelope. 

Three Axes Representation 

Equations (20) and (21) demonstrate that the pdf of the length of 
runs of waves are controlled by the mean length of run at different 
levels. Therefore, the representation of these mean lengths of run of 
waves will characterize the statistical structure of wave groups. 
Longuet-Higgins (1984) gave the following estimation of the average length 
of run of high waves: 

A ±15- 
jki (h/ysi^) 

(23) 

in which S2   - l-(mf/m0m2) = v2/(l+vz).      Equations (23) and (22) can be 
rewritten as 

(1"V ~ exPtao'/ (24) 

2^h 

A 
exp 

f&m. 
exp(«1) (25) 

where Eq. (24) is equivalent to Eq. (23) if /30 = 1 and a0 1/2 ln(4)r S2) 
and Eq. (25) is equivalent to Eq. (22) if Oj - 0 and $x -  2. 

Introducing the following change of variables: 

u - In 
/8mr 

;     v = ln(x^h) w — In In 2Ti 

A 
(26a,b,c) 

Equations (24) and (25) can be transformed into the following equations 
for straight lines: 

w - o^ + JSJU  ;  v - aQ - PQu (27a,b) 

If the exponential approximation is valid, this permits a graphic repre- 
sentation in three axes of pairs of values d^h, 2Jlh)   that should fit on 
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straight lines with a1 

shape. 
0, j8x = 2, f}a -  1 and a0  depends on the spectral 

Figure 8 illustrates a three-axes representation of the mean length 
of runs of waves observed from envelopes of 40 DSA—FFT simulations of 
JONSWAP spectra (7 - 10, fp - 0.1 Hz, fmax - 4 fp) sampled at intervals of 
AT - 0.5 sec), and AT = T01. Also runs of discrete waves in the same simu- 
lations and observations of Goda (1983) of long-traveled swell waves are 
represented. 

-0.5- 

1 • Goda's (1983) Observations 

Simulations DSA (T"=10) 
2 © Discrete Waves 
3 XEnvelope (AT-T0)) 
4 ©Envelope (AT=0.5sec.) 

Fig. 8. Three-Axes Representation of Mean Length of Runs Estimated by 
Discrete Waves and by Envelope (40 DSA Simulations of JONSWAP 
Spectrum 7 - 10, f - 0.1 Hz). 

The exponential approximation agrees quite well (lines 'a', and 'b') 
using the envelope sampled at small time intervals. Although line 'b' 
seems quite robust (related to the Rayleigh distribution), line 'a' 
depends on the sampling time interval of the envelope; showing larger 
length of runs for a larger AT. 

Figure 9 shows the mean length of runs obtained from simulations (7 
— 1 and 10) and from analysis of discrete waves. The square of the wave 
height function, H2(t), has been filtered with a rectangular window of 
length T01. The agreement depends on 7 and demonstrates that the analysis 
of length of runs of waves using the envelope is far different from that 
using discrete waves. Neither sampling nor filtering H(t) permit a 
comparison of these results. 
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0.5 

-0.5 

V(U) 

r=io 
X Discrete Waves 
• H2(t) Filtered UT=T0]) 

Fig. 9. Three-Axes Representation of Mean Length of Runs Estimated by 
Discrete Waves and by Temporal Hilbert Filter with a Rectangular 
Window AT - l/f01 for JONSWAP Simulations (7 = 1 and 10, fp - 0.1 
Hz). 

CONCLUSIONS 

Based on a linear assumption, and supported by observations of 
different authors in non-shallow waters, the analysis of waves in the 
complex plane leads to definitions of a wave height and a frequency which 
represent the instantaneous values of these variables for random seas. 
Efficient Hilbert filters in the time domain make it possible to define 
with reasonable precision the waves in the complex plane and to compare 
the results with other analyses. 

The use of temporal Hilbert filters to estimate H2(t)/8 is the best 
method to define the instantaneous variance function of a record. The 
isolation of the low frequency components of ij2(t) by this methodology is 
better than the SIWEH and other empirical methods. The Groupiness Factor, 
GF, is not an efficient way to characterize wave grouping characteristics 
because of the amount of smoothing that is introduced in relatively broad- 
banded spectra. 

The local frequency function fl(t) can be defined on the basis of a 
mean value f01 — mj/mQ and a fluctuating component that is inversely 
proportional to the wave height function, H(t). 

A three-axes representation of mean length of runs of waves shows 
that neither sampling nor filtering H(t) makes it possible to compare 
directly the results from analyzing a sequence of discrete waves with an 
analysis from the continuous wave height function. 
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