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ABSTRACT 

Characteristics of mean velocity and turbulence properties 
in oscillatory bottom boundary layers are investigated with low- 
Reynolds number turbulence model. Since this model is capable to 
describe the flow field close to the bottom, special attentions 
are paid on the characteristics of the viscous sublayer. 
Several interesting results, which coincide with or differ from 
existing knowledge on steady bottom boundary layers, are 
presented in paticular on the mean velocity profile, turbulent 
viscosity coefficient and growth of the viscous sublayer. 

I. INTRODUCTION 

Existing studies for turbulent transport phenomena in 
coastal processes are mainly based on the eddy viscosity concept. 
However, it has been recognized that the predictive ability of 
eddy viscosity models is severely limited. Recently, as the 
computer technology has been advancing, applications of turbulent 
transport models to oscillatory flow have received special 
interest. At present, k-e model is regarded as the most widely 
tested and the most applicable two equation model, in which two 
partial differencial equations are used to describe turbulent 
kinematic energy k and its dissipation rate e . 

A few researchers have investigated the applicability of the 
k-e model to oscillatory boundary layers( Cousteix et al.,1979; 
Hayashi and Shinoda, 1979; Shen, 1984) , most of these studies 
dealing only with a high Reynold number version of the k-e 
model. Such a model is no longer applicable to the near bottom 
region, where the local isotropic condition is not satisfied. 
Besides, in oscillatory flow, the velocity is so small when the 
flow direction changes that the turbulence is not always 
intensive throughout a full period. From above reasons, a k-e 
model which accounts for low-Reynolds number effects should be 
applied to oscillatory turbulent boundary layers. 
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This study examines the applicability of a k-e model of low- 
Reynolds number version to oscillatory boundary layers. From the 
results obtained, characteristics of both the mean velocity and 
turbulence are discussed. Furthermore, since the model describes 
the flow field close to the bottom, comprehensive investigaions 
have been made on the characteristics of the viscous sublayer. 
The growth of the viscous sublayer under the flow acceleration is 
investigated in relation to a phenomenon of 're-laminarization' 
in an accelerated uni-direcional flow. 

II. k-e MODEL FOR LOW-REYNOLDS NUMBERS 

In order to predict the flow within a viscous sublayer 
close to the bottom, Jones and Launder (1972,a) have introduced 
the following extra terms into the standard k-e model : (1) terms 
to represent viscous diffusion of k and e, and (2) terms to 
account for the non-isotropic dissipation process. Furthermore, 
they have modified some coefficients in the k-e equations into 
functions of the turbulence Reynolds number RT, which is defined 
with k, « and kinematic viscosity v   as follows: 

Rr—k'/ve l i \ 

For a steady flow, the wall function method (Rodi, 1978) is 
often used as an alternative to the direct consideration of 
viscous sublayer properties. In this method the boundary 
conditions at the bottom are replaced by those immediately 
outside the viscous sublayer based on empirical laws under the 
local turbulence equilibrium condition. The method, however, is 
not applicable to an oscillatory flow since the rate of 
turbulence generation does not coincide with that of its 
dissipation at each phase. One of the merits of the low-Reynolds 
number k-e model is that all the variables at the bottom can be 
set to be zero without invoking any empirical knowledge. 

Ill  OUTLINE OF THE ANALYSIS 

(1) Basic equations 

The oscillatory boundary layer equation is given as 
follows: 

d(u—Up) _ du'w'      d*u 
dt      ~ dz~      dz2 (2) 

where x and z axes are taken along and normal to the flat bottom 
respectively, t is the time, u is the mean velocity in the 
boundary layer, up is the mean velocity at the outer edge of the 
boundary layer, and u' and w' are the fluctuating velocity 
components. The Reynolds stress -pu'w1 is expressed as a product 
of mean rate of strain 3u/dz and turbulent viscosity u^. 

-/—?   9u ~uw=vt-^ (3) 

The turbulent viscosity wj> is determined by local values of 
turbulent kinematic energy k and its dissipation rate e. 

*T=c,fPk (4) 



OSCILLATORY BOTTOM BOUNDARY LAYER 745 

According   to   Jones   and   Launder's   model    (1972,a),    the   following 
equations  are adopted  for k and  e . 

dt ~ dz v+ VT \ dk 
an 1 dz 

—,du „ (dk'" 
-uw-jz"e-2v[-ir (5) 

de      d  it       VT \ de )        , £ -j—.du        . eJ  , _      td'u 

The underlined terms are included to account for low-Reynolds 
number effects. After Jones and Launder, the coefficients in 
Eqs.(4) ~(6) are given as follows: 

C=0.09,   d = 1.55,   c* = 2.0, 

er*=1.0,   <r.= 1.3 

The following expressions proposed by Jones and Launder for fj, 
f2, fp  are also adopted. 

/.= 1.0 

/, = 1.0-0.3exp(-7?'r) 

/,=exp {-2.5/(1 +RT/50) 

These are a lot of arguments (Hanjalic and Launder, 1976 ; 
Hosoda and Yokoshi, 1986) concerning the values of the 
coefficients in Eq. (7) and the functional forms in Eq. (8) even 
for steady flows. Another problem may arise in applying the 
values and functional forms proposed for steady flows to 
oscillatory flows. However, they have been confirmed to be 
universal at least for various types of steady flow. Furthermore, 
as seen from Eq.(l), the turbulent Reynolds number RT varies 
spatially and temporally with k and e , and it is expected that 
the vaiations of f2 and f^ express the temporal variations of 
the oscillatory flow properties. 

(2) Non-dimensional description of basic equations 

To obtain non - dimensional forms of the basic equations, 
the following variables are introduced: 

Wr=(« —M»)/«2»,    Zr = ZJ&, tr = h)t, 

Jr — —u'w'\u1>       kr = kl\-^r-u; ,   £r = e/( yW«i 19) 

where up is the velocity amplitude immediately outside the 
boundary layer, u is the angular frequency of the oscillatory 
flow, &=-fvJu is related to Stokes length. Now, the system of the 
equations to be analysed here is as follows: 

diir 
= R' 

dzT     ~dz~f 
(10) 
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1     „./)        ,   k'r   dlir 

3kr=   d 

dtr       dZr 2        fft       £r / dZr 

dZr \ OZr 

(II) 

(12) 

dtr      dZr ^>m 
+ 2R      C./.-^Tr^ C!/a— 

+ 2RcJf 

kr '' dz, 

dz) 

where R is the Reynolds number defined as follows: 

-ft) 
V 

(13) 

(14) 
IDS'   v 

where a is the orbital amplitude at the bottom. 
By using low Reynolds number k-£ model, the bottom boundary 

condition is described in the following simple way. 

Ur=— COStfr,    Ar = 0,    £r = 0,      at  *r = 0 

The upper boundary condition is described as follows. 

^=0,  £.=0. £-«o. 
OZr OZr OZr 

(3) Computational Technique 

at    Zr—\ 

(15) 

(16) 

The vertical grid spacing AZ was determined at D/600( D: the 
height where shear stress becomes negligible) to obtain 
sufficient number of grid points in the viscous sublayer. The 
system of the basic equations (10)~(13) was solved by the Crank- 
Nicolson implicit scheme. The time increment At was T/2160. The 
calculation was continued until the variables at a phase in 
successive cycles converge. The conditions of calculations are 
listed  in Table  1. 

Table   1     Conditions  of  calculations. 

ffp T D 

(cm/sec) (sec) (cm) R 

CASE-I 30.0 9.8 4.0 1 .40x105 

CASE-II 30.0 15.0 4.0 2.15X105 

CASE-HE 40.0 9.8 5.0 2.50X105 

CASE-IV 49.9 9.8 7.0 3.87X105 

CASE-V 49.9 15.0 7.0 5.93X105 
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IV. RESULTS AND DISCUSSION 

(1) Mean velocity and turbulence properties 

Figure 1 shows profiles of the non-dimensional mean velocity 
ur, Reynolds stress rr, turbulent energy kr and its dissipation 

rate er for every */6 phase. In Fig.l and following all figures, 
the height z is normalized by D (zr'=z/D) instead of S (zr=z/«). 
It is found in the results at the phases 0 and n that the heights 
where the mean velocity reaches its maximum increase with the 
Reynolds number R; that is, the velocity gradient decreases with 
R. 

Figure 2 depicts variations of these quantities with phase. 
The peak values of rr, kr and er becomes larger as R increases. 
The phase lags of the maxima of rr, kr and er behind the maxima 
of the outer velocity decrease with increase in R. It should be 
noted that the phase of the total shear stress -pu'w'+pi/du/Sz 
close to the bottom goes ahead of the phase of the outer velocity 
although the phase of the Reynolds stress -^u'w'lags behind it. 

Profiles of the mean velocity ur are given in Figure 3, 
where the ordinate is taken in the logarithmic scale. The figure 
also shows the positions of the outer edge of the viscous 
sublayer DL and the overlapped layer d estimated on the basis of 
Kajiura's (1968) theory. It is observed in the profiles around 
the phase 0 and JT that the mean velocity shows linear variation 
in the region ZJ-'<DL/D, and log-linear variation in the region 
DL/D<zr'<d/D. These properties are consistent with the general 
findings in steady unidirectional flow. Such properties however 
are not so obvious for the other phases. 

(2) Turbulent viscosity coefficient 

Figure 4 shows the profiles of the turbulent viscosity 
coefficient I>T ,which is calculated by the local instantaneous 
values of k and e shown in Eq. (4) . It is found that I/T increases 
almost linearly in the region close to the bottom; the phase 
averaged value of vj; is almost constant in the region of 
0.1<zr'<0.4; i/j decreases with the height in the outer region 
zr'>0.4. 

(3) Transport process of turbulent energy 

Figure 5 shows the turbulent energy balance in the 
oscillatory boundary layer for CASE-I. The symbols Dif, P, e and 
Ni in the figure denote the turbulence diffusion(lst term of 
R.H.S. of Eq.(12)), production (2nd term), dissipation(3rd term) 
and non-isotropic part of the dissipation near the bottom(4th 
term) . 

The turbulence production P does not balance with the 
dissipation e at each phase. The heights for peak values of P and 
t apear in the range of zr '=0.015 — 0.025, and the variation of 
the heights coincide fairly well with the variation of the height 
of the outer edge of the viscous sublayer which is shown in 
Figure 6 later. The diffusion term Dif is positive in the region 
corresponding to the viscous sublayer. The non-isotropic 
dissipation term Ni takes negative values in the viscous sublayer 
and tends to zero outside the region. 
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Fig.2 Phase variations of Reynolds stress xr(top), turbulent 

energy kr(middle) and turbulent energy dissipation rate 

Er(bottom). 
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viscous   sublayer 
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Fig.3  Profiles of mean velocity. 
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Fig.4     Profiles  of  turbulent  viscosity  v>j. 
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Fig.5  Turbulent energy balance near the bottom. 
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phase 

Fig.6  Variations of the height of viscous sublayer with 

phase. 

phase 

Fig.7  Variations of the height of viscous sublayer with 
phase (at the height where RT=5). 
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(4) Variation of the height of viscous sublayer 

In Kajiura's(1968) theory, the height of the viscous 
sublayer is assumed to be invariant regardless of phase. However, 
it is found from the following consideration that the height 
varies with the phase. 

The total shear stress rj consists of the viscous and the 
turbulent shear stresses. 

, du 
TA = P{V+VT)-^ (17) 

From Eqs.(l) and (4), uT is expressed as a function of the 
turbulent Reynolds number R^: 

vr = c,f,vRT (18) 

Consequently, the ratio of the viscous shear stress to the total 
shear stress is a function of RT- The viscous shear stress 
occupies 95.7% of the total shear stress when RT=5, and 99.2% 
when RT=1. If the outer edge of the viscous sublayer is defined 
as a position where R^ equals 5, the phase averaged height 
coincides well with that estimated from Kajiura's theory for all 
cases of the present calculations. The coincidence is not 
surprising because both this model and Kajiura's theory are based 
on same experimental knowledge on steady bottom boundary layers. 

Figure 6 shows variations of the heights where R^ equals 5 
and 1. It is concluded that the thickness of the viscous sublayer 
varies with the phase and reaches the maximum slightly after the 
occurrence of the maximum acceleration. In other words, the 
turbulent energy becomes minimum at the accelerating phases. This 
is analogious to the re-laminarization in accelerated 
unidirectional flow(Jones and Launder, 1972b). For an oscillatory 
pipe flow, Hino et al.(1976) have found experimentally the 
recovery of a laminar flow condition in the accelarating phases. 

Figure 7 shows the variations of the height where R^ equals 
5. Comparisons of cases I and II and of cases IV and V, in which 
cases the velocity amplitudes are same and the oscillation 
periods are different, show that the maximum thickness of the 
viscous sublayer increases as the oscillation period increases. 
In a steady accelerated flow, the thickness of the viscous 
sublayer increases with the flow acceleration(Jones and Launder, 
1972b) , whereas the results in Fig. 7 show the opposite feature 
that the viscous sublayer becomes thicker under smaller flow 
acceleration. Such difference is attributed to the time required 
for turbulent energy decay. In the case of short-period 
oscillating flow, the duration of small flow velocity is not 
enough for the turbulent energy to attenuate. It can be concluded 
that the duration of turbulence decaying is a more predominant 
factor than the effect of flow acceleration for the growth of the 
viscous sublayer. 
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V. CONCLUSIONS 

X) The variations of the mean velocity and turbulence quantities 
depending on the Reynolds number have been investigated. The 
velocity gradients at the phases 0 and n close to the bottom 
decrease with the Reynolds number. The phase lags of the 
turbulence quantities behind the outer velocity decrease with 
increase in the Reynolds number. 

2) At the phases around 0 and *, the mean velocity varies in 
proportion to the height from the bottom in the viscous sublayer 
and shows the logarithmic variation in the overlapped layer. 
These are consistent with the general findings in steady flow. 
However, for the other phases such properties are not so obvious. 

3) The tubulence viscosity coefficient increases in proportion to 
the height in the region close to the bottom, then keeps almost 
constant in the region 0.1<zr'<0.4, and decreases with the height 
in the outer flow region. 

4) The thickness of the viscous sublayer varies with phases of an 
oscillatory flow and becomes maximum when the flow accelerates. 
The thickness increases with the oscillation period, meanwhile it 
increases with the flow acceleration in accelerated 
unidirectional flow. 
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