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Nonlinear effects on focussed water waves 

by 

D.H.Peregrine*, D.Skyner*, M.Stiassnie* k  N.Dodd** 

Abstract 

A brief account is given of theory and experiments for water wave 
focussing. The theory uses weakly nonlinear wave modulation theory, 
that is the nonlinear Schrodinger equation, summarises earlier 
theoretical papers and augments them with numerical results. 
Experiments were performed to compare with theory. The limited 
comparison shown here indicates that the theory gives satisfactory 
results even for waves close to breaking. Both the numerical and 
experimental results indicate the importance of linear diffraction when 
waves are focussed. The relevance of diffraction is easily assessed, 
and is likely to dominate in many coastal examples of weak focussing. 

Introduction 

In practical examples of water-wave refraction, ray diagrams 
frequently show rays crossing. Often the initial ray intersections 
involve only a few rays with no well defined structure apparent. Any 
crossing of rays is an indication that the ray-theory approximations 
have become invalid, and a greater density of rays will normally reveal 
a focussing of rays near the initial crossing point. In practice 
simple smoothing or averaging methods are sometimes used to calculate 
wave heights. Where these have no rational basis there is always an 
uncertainty about possible steep waves due to focussing being missed. 

Diffraction effects need to be included in order to obtain 
accurate solutions near a focus. In addition, if waves are steep 
nonlinear effects are significant. This paper reports on theoretical 
and experimental work. 
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Model examples 

In order to clarify ideas we consider two simple cases. In each 
case we suppose that waves have already suffered refraction due to 
propagation over a shoaling area or through non uniform currents which 
focus them but that the waves now propagate toward a focus over water 
of uniform depth. The focussing portion of the wave front is taken to 
be circular subtending an angle 2a at the focus which is at a distance 
f. The rest of the wave front is taken to be straight. In case (a) 
waves away from the focussing region are taken to be parallel to the 
central ray through the focus, and in case (b) they are taken to be 
smooth straight extensions of the circular arc; see figure 1. 

In case (a) there are no further ray crossings until well beyond 
the focus and study can be directed to wave amplitudes in the focal 
region. In case (b) waves from both sides continue to cross behind the 
focus and wave amplitudes can be expected to be at least twice those of 
the original wave train, and any exception near the focus is of 
interest. 

(a) (b) 

Figure * Two examples of wave focussing (a) where the focussing region 
is not influenced by the wave front on each side of the 
initial focussing wave, (b) where the waves each side of the 
focussing wave meet close to the focussing region. 
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Linear waves 

Since solutions of the linear wave equation may be superposed, the 
initial conditions may be broken down into sub-problems: two 
semi-infinite plane waves with their attendant diffraction and the 
focussing arc. The latter is of the greater interest since the 
half-plane waves correspond to Sommerfeld's solution for diffraction by 
a semi-infinite barrier. Exact solutions of the linear problem are 
easily created by adding plane-wave solutions. We have used one 
particular example to represent a focussing arc. It is a set of N 
plane waves of equal amplitude and equal angular spacing in the range 
(-a,a) all in phase at the focus. We call this example F and it is 
taken to be illustrative of the case shown in figure 1(a). 

It is easy to compute solutions for example F corresponding to the 
focus having differing angles 2a   of incoming waves and different 
distances, f, from an initial line.  The effects of diffraction show 
for a = 15° and a focal distance f = 10L, (L is wavelength), this exact 
solution shows an increase of amplitude over the initial conditions of 
only 207.. • This small increase is due to diffraction counter balancing 
the focussing effects. On the other hand initial conditions with the 
same value of a    but larger values of f do lead to focussing with 
enhancement of wave amplitude, so that it might approach the estimate 

i 

of 2a(2f/L)T given, in different notation, by Peregrine (1986). 

The effects of diffraction scale with the Fresnel number 
N = a2f/L. 

The example given above, with N = 0.7, is chosen since it represents a 
balance between diffraction and focussing. For large N, focussing is 
dominant. In any specific example it is easy to calculate N and assess 
diffraction. For example, if waves have a wavelength of 80 metres and 
part of the wave front of angle 20°, i.e. a = 10° = 0.174 radius, 
focusses at a distance of 2000 metres, then N = 0.76, which implies 
strong diffractive effects 

Nonlinear waves 

A major effect of nonlinearity on refraction is wave defocussing. 
Some aspects of this are described in Peregrine (1983, 1985 and 1986) 
for examples where Stokes's wave theory is a good approximation for 
periodic waves, i.e. not too shallow water. From a practical point of 
view this defocussing is reassuring since the nonlinear effects are 
reducing maximum amplitudes. However, unlike linear waves, theory 
shows that the effects of the waves bounding the waves that focus 
cannot be treated by simple superposition of solutions. 

For the configuration of figure 1(a) the bounding waves do not 
contribute significantly more energy to the focussing region, in fact 
they act to spread the disturbance of the wave front more rapidly, 
since nonlinear effects lead to a "splitting" of linear rays 
(Peregrine, 1983). 

More care is needed when assessing the effects of converging waves 
such as in figure 1(b). Here linear theory indicates that behind the 
focussing region the bounding waves contribute twice the initial 
amplitude as they are superposed. On the other hand for small angles, 
2a, between these waves the nonlinear theory indicates formation of a 
'wave jump'.  Such jumps were identified by Yue and Mei (1980) and 
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further studied by Peregrine (1983). They give rise to a "Mach stem" 
type of interaction between the two wave fields. The height of the 
Mach-stem may be greater or less than twice the height of the incident 
waves as may be seen from careful study of figures 3 and 4 in Peregrine 
(1983). One figure is for deep water waves, the other for solitary 
waves ("Wedge angle" on these figures should be identified with a 
here). 

In the above-mentioned figures amplifications as high as four 
times the incident waves appear possible. Such amplifications have not 
been observed in experiments and there are indications that diffraction 
effects may limit all or most of these excessive amplifications 
especially in deeper water. For solitary waves the maximum 
amplification observed by Melville (1980) in experiments on Mach stem 
reflection was no greater than twice, but Funakoshi's (1980, 1981) 
computations with the Boussinesq equations do include an example with 
an amplification of nearly three times. 

Numerical solutions 

The linear superposition of waves described above, gives an exact 
linear solution has been compared with solutions of a linear parabolic 
equation, 

for wave amplitude A(x,y) where surface elevation is r\ = Aelliy~Mt, k is 
the wavenumber and y is in the direction from the initial line to the 
focus. As expected good agreement was obtained up to a = 30° the 
maximum value considered. 

Nonlinear solutions were found by numerically integrating the 
nonlinear Schrodinger equation 

2ikAy = Axx - K|A|2A, 
as described by Yue and Mei (1980). Some computation was with a simple 
implicit finite difference scheme, but for most computations a 
substantially more efficient high-order explicit scheme due to Dold is 
used. Integration time on a multi-user VAX computer is of the order 
one minute elapsed time, so results are readily available for any 
choice of parameters. Figure 2 shows an example corresponding to the 
case in figure 1(b) depicting the wide focussing region and bordering 
wave jumps with modulations as described by Peregrine (1983). A useful 
way of interpreting this type of example is that the focussing part of 
the wave contributes an extra width to the Mach-stem regions the 
bounding plane waves would create on their own. However, there are 
further aspects of this area which are to be described in a more 
complete account in preparation. For comparison figure 3 shows a 
linear solution for the same initial conditions. 

Experimental measurements 

Experiments corresponding to the examples described above were 
carried out in the Vide Wave Tank at Edinburgh University. This tank 
has 75 wave paddles each one foot (30cm) wide. A line of 24 wave 
gauges were used to measure wave height. Any chosen wave pattern was 
repeated 16 times, on each occasion being moved along by one paddle. 
In this way a set of 24 x 16 wave measurements were made without 
changing equipment position. Under computer control this gave a whole 
range of experimental results at different steepnesses, and focussing 
distances with both the wave patterns indicated in figure 1. 
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Figure 2 A contour plot of a numerical solution for the amplitude of a 
wave, like that in figure 1(b), with uniform initial steepness 
ak = 0.2, H/L = 0.06. This shows the very wide focussing 
region and the modulated wave jumps at each side. Contours 
are at 107., 907, and 1707. of the initial amplitude. 
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Figure 3 The linear theory solution equivalent to figure 2. Contour 
intervals are the same, but also include 250% and 330% of the 
initial amplitude, which are not reached in figure 2 
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In figure 4(a) we show, experimentally measured wave amplitudes 
for example F. The amplitude of the measured Fourier component at the 
forcing frequency is shown. This is compared in figure 4(b) with the 
corresponding linear solution, and the amplitude is clearly much 
greater than in the experiment. The nonlinear solution in figure 4(c) 
is much closer to the experimental values. However, there are small 
scale features in the experiment which suggest the spatial modulation 
one may expect from a reflected waves. The numerical integration was 
continued "beyond" the end of the tank where it was reduced by a 
reflection coefficient corresponding to that measured for plane waves, 
0.05 in this case, and the resulting reflected wave added to the wave 
field of figure 4(c) with the result shown in figure 4(d). A 
superposition of figures 4(a) and (d) given in figure 5 shows that 
although there are some differences agreement is satisfactory in many 
details. 

It would be surprising if there were no discrepancy since the 
nonlinear Schrodinger equation describes weakly nonlinear waves and in 
this particular experiment the maximum wave steepness is 857. of the 
steepness of the steepest steadily propagating wave. 

Conclusions 

Experiment and theory for wave focussing are in good quantitative 
agreement once reflection from the end of the tank is allowed for. In 
some experiments waves just reached breaking steepness. 

Nonlinear defocussing of water waves is confirmed, but the 
importance of linear diffraction in defocussing has also been noted and 
this can be dominant in practical cases. 

The experimental tank length is insufficient for wave jumps to be 
studied but the results give confidence in the equations describing 
their existence, even for waves close to breaking. 

A definitive report of this work is in preparation. The support 
of the U.K. Science and Engineering Research Council is gratefully 
acknowledged, and we thank Professor S. Salter for the use of the Wide 
Wave Tank at Edinburgh University. 
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Figure 4 Contour plots of wave amplitude in the region of experimental 
measurements for the wave pattern of example F with initial 
maximum steepness of ak = 0.2, II/L = 0.06. Contours at 
intervals of 307. of initial amplitude, (a) experiment 
(b) linear theory. 
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(c) 

(d) 

T—r 
Figure 4 Contour plots of wave amplitude in the region of experimental 

measurements for the wave pattern of example F with initial 
maximum steepness of ak = 0.2, H/L = 0.06. Contours at 
intervals of 307. of initial amplitude, (c) nonlinear theory 
(d) nonlinear theory plus 57. reflection. 
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Figure 5 Figures 4(a) and 4(d) superimposed. 
The broken lines are the experimental contours. 
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