
CHAPTER 52 

THREE DIMENSIONAL FLOW PROFILES ON LITTORAL BEACHES 

lb A. Svendsen, M.ASCE1 and Rene S. Lorenz2 

ABSTRACT: The problem of combined cross-shore and longshore currents 
generated by waves in and around a surf zone is considered in its full 
three-dimensional formulation. The equations for the two current 
components are decoupled and it is found that for a cylindrical coast 
with no longshore variations the longshore current variation with 
depth and distance from the shoreline satisfies a Poisson equation. 
This equation is solved by a perturbation method and it is shown that 
the longshore velocities are always larger than the velocities found 
by classical theory. In the simple uncoupled case, the full 3-D 
current profile is constructed by combining the results with cross - 
shore velocities determined in previous publications. Also, the total 
velocities are larger than velocities found from simple depth averaged 
models. 

1.  INTRODUCTION 
The present paper deals with the variation over depth of the 

magnitude and direction of the wave induced mean currents on a beach. 
In the past, the dept variation of wave induced currents have been 

studied for the purely two-dimensional case of cross-shore flow with 
particular aim at the seaward going undertow (among the latest 
contributions may be mentioned Stive & Wind (1986) and Svendsen & 
Hansen (1988)) . 

Longshore currents have mostly been analyzed in the simplified case 
of a long beach with straight bottom contours and no flow variations 
in the longshore direction. The first contributions date back nearly 
20 years (Bowen, 1969; Thornton, 1970; Longuet-Higgins, 1970), and 
numerous works have been published on the topic since then. They all, 
however, consider depth integrated equations only, and therefore can 
only determine a sort of depth averaged value of the longshore current 
velocity. 

Some contributions have claimed three dimensionality for the 
current description without actually being so. There is also a 
quasi-3D model inspired by river hydraulics was recently suggested by 
deVriend & Stive (1987) (essentially the same as Stive & deVriend, 
1987). They divide the current motion into a primary part which has 
the direction and depth averaged magnitude of the net discharge; and a 
secondary flow which has zero depth mean, goes in the direction of the 
wave energy flux, and is generated by the wave motion. Further, the 
secondary current is assumed small relative to the primary current. 
As an example, however, the undertow is generated by the waves and has 
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zero depth mean and hence would be a secondary current according to 
their definition. On the other hand, it will usually be significant 
in comparison to net flux current and for obliquely incident waves it 
will not be in the direction of the wave energy flux. Another 
example, the longshore current does not seem to fit into the idea that 
the secondary currents generated by the waves have zero depth mean. 
Thus the assumptions of de Vriend and Stive (1987) do not seem to 
cover those two important examples of wave generated currents. 

In the present paper we shall take a very much different approach 
to the problem of three dimensional nearshore circulation and 
particularly discuss two aspects. One is the variation over depth of 
the longshore (as well as the cross-shore) currents. The other is the 
variation of the combined cross-shore and longshore flow. The 
discussion will be centered around the basic assumptions and the 
physical aspects of the solution. Readers are referred to Svendsen 
and Lorenz (1988) for some of the detailed derivations omitted here. 

The starting point is taken from the three dimensional Reynolds' 
equations derived in the above mentioned reference for a combination 
of waves and wave induced currents in an environment with turbulence 
produced by primarily wave breaking. Although those equations are 
fairly general we concentrate the discussion here on the situation of 
a long straight coastline since some of the essential features of the 
combination of cross and longshore currents also appear in that 
canonical situation. 

2.  THE BASIC ASSUMPTIONS AND THE EQUATIONS USED 
The flow situation on a beach corresponds to a combination of a 

turbulent, oscillatory (wave) motion and a current. In particular 
inside the breaker point the turbulence generated by the wave breaking 
will be very intensive. 

The equations governing the wave induced currents can be derived 
from the general Navier-Stokes equations by transformations that 
correspond to turbulent (or ensemble) averaging (leading to Reynolds 
type equations) and to averaging over a wave period (corresponding to 
the equations derived by Whitham (1962) and Longuet-Higgins and 
Steward (1960,61)). 

In accordance with the above description, the total velocity 3 - 
(u, v, w) is divided into three components by the relations 

u - U + uw + u' 

v - V + vw + v' 

w —    w„ + w' 

(2.1) 

Here index w indicates oscillatory (wave) components, ' turbulent 
quantities. We use " to indicate ensemble averaging, which means that 
u' — v' = w' — 0. Similarly, denotes averaging over a wave period 
so that uw = vw = ww - 0 below trough level. 

By the above mentioned averaging processes and eliminating the 
pressure by integrating the vertical component of the momentum flux we 
arrive at the following two equations for U and V, the horizontal 
current components. 

au ^ su2   suv   a<ug - 5%)   a^B . 3u,jWw 
al   +   aT  +   W       —aT^   +    ay      +      az (2.2) 

3b    3(u"^ - w^)  _ a  u/v'  _ 3u'w' 
S3x        3x 3y       3z 
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and 

3V    3Vl 3UV    8 (v% - w,5)  + 8u«v« + 3vwww 
at   ay   ax      ay      ax    3z 

(2.3) 
3b    3v'2 - w'2 _ 3u'v'  _ gv'w' 

s 3y ~    3y 3x      dz 

Eqs. (2.2) and (2.3) are in principle the momentum equations 
governing the wave induced current motion and it is those equations 
that are examined further in the following. They differ from the 
usual depth averaged equations in that they are not integrated in the 
vertical direction. Thus U, V are in general functions of x, y and z. 
The equations are only valid below trough level. 

In order to solve these equations for U, V it is necessary 
a) to assume that the terms with index w representing the wave motion 

are determined by some wave theory or by measurements. 
b) to model in terms of quantities determined otherwise the turbulent 

normal and tangential stresses. 
In the present context, we do not loose any of the effects we want 

to examine by using a simple time-independent eddy viscosity model for 
the turbulence. Besides, this has been shown for the cross shore flow 
to yield very reliable results (see e.g. the earlier quoted references 
and Svendsen et al. (1987)).  Hence we let 

[av   avl 
Lax  '  3zJ 

- "t 
a_u 
3z 

(2.4) 

in which we have already introduced the simplification of uniform flow 
conditions in the longshore direction(3/3y - 0). We also neglect the 
turbulent normal stresses. 

3.  THE FLOW PROFILES ON A CYLINDRICAL COAST WITH NO LONGSHORE 
VARIATIONS   
This canonical case corresponds to letting 3/3y — 0 in both (2.2) 

and (2.3) which yields equations amenable to analytical solution 
without the essential features of the flow are lost. We also limit 
our considerations to time independent current patterns. Hence the 
equations we consider for further simplification are the following 

and 

a_ 
3x 

where also (2.4) has been substituted. 

The Cross-Shore Motion 
With suitable additional simplification (3.1) becomes the equation 

solved in the literature for undertow. Several of those 
simplifications were analyzed by Stive & Wind (1982) and Svendsen et 
al. (1987), using measurements to calculate the magnitude of the wj, 
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the u'2 — w'2 and U2 terms. Although the U2 term is found not to be 
quite negligeable, the measurements used by Svendsen et al. (1987) 
show that the dominating driving term in (3.1) is the 3b/3x - term. 
3u^/3x is only 10-20% of that and the other terms are even smaller. 

The measurements also show that uj is remarkably constant over 
depth, a fact that has been further confirmed by later, yet 
unpublished, laboratory results. 

The 3uwww/3z term has also been neglected in all previous 
investigations. It represents the net horizontal shear stress on a 
fluid particle generated by the oscillatory wave component. For 
constant depth wave theories (such as the linear wave theory which is 
often used for the wave contributions) this term is identically zero 
(except in the boundary layer). On a sloping bottom we have no wave 
theory from which we can evaluate the term. Simple estimates suggest, 
however, that the term is substantially smaller than 3u^/3x. Hence in 
spite of the principal importance of the duwww/8z term in deriving the 
depth integrated version of the equations, it is a good approximation 
locally to disregard this term in the equation for cross-shore 
currents. 

With the assumed constant eddy viscosity and with the driving term 

uniform over depth the solution for the undertow may be written 

where A, is an integration parameter related to the mean bottom 
friction. U^ is the bottom value of the undertow profile if extended 
to the bottom without consideration of the bottom boundary layer. For 
a closer discussion of evaluation of At and Ut, reference is made to 
Svendsen & Hansen (1988). 

The Longshore Motion 
The longshore motion is given by (3.2). The additional 

simplification needed to make this equation solvable is related to the 
UV-term. This term represents the effect which the undertow has on 
the longshore current. Although this effect may locally be 
appreciable it can readily be shown that averaged over depth the 
contribution will be almost nil. In order to proceed we choose here 
to neglect the term.  Then (3.2) reduces to 

f  3V~]   ^ d     (      3V"| + av^ (3>5i) 
3x I z  3x1   3z I z dz) 3x     3z 

Since the right hand side is considered known, this is a Poisson 
equation for the variation of the longshore current velocity V over 
depth and cross shore directions. 

It may be noticed that the effect of neglecting the UV-term is that 
the equation for the longshore current becomes independent of the 
solution for the cross-shore current. Similarly, in the general case 
of arbitrary bottom topography this would have freed the cross shore 
current from dependence of the longshore current solution. 
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Eq. (3.5) may also be written 

V(Kt V V) - gxy 

where 

_ 8_ gxy  3x ["w
vwj + Jl   (vwwwJ 

4.  SOLUTION FOR THE LONGSHORE CURRENT VARIATION WITH x AND z 
It turns out that by physically realistic assumptions about 

magnitude of the terms in (3.5) and the boundary condition at the 
bottom (3.5) can be solved by a perturbation technique which as the 
first approximation has the classical solution for depth averaged 
longshore current velocity.. 

First we notice that since (3.5) is an elliptic equation it 
requires boundary conditions along the full boundary. 

The forcing term g(x,y) will only be non-zero shoreward of the 
transition point, xt (Svendsen, 1984). Hence, at xt, gx„ is 
discontinuous and matching of solutions must be arranged as in 
traditional longshore current solutions with depth independent 
velocities. 

Eq. (3.5) is only valid below wave trough level. Therefore another 
boundary condition is that at the trough level 

T        -   pvt  -5 -r- S at X - IJt (4.1) zy    c 3z  3x xy,s ,c 

where Sxv s is the radiation stress contribution above trough level, 
and t)t is the wave trough level. This boundary condition is 
introduced into the mathematical formulation by combining it with the 
requirement that (3.5) be satisfied at all z below trough level to 
yield the depth integrated momentum balance which becomes 

ax 
av(x,z) ,      asyv        ,. „. 

p "t —a   dz ~ T v. —~sr* (*-2) r     <-      3x        yb   ax 

For V independent of z this expression reduces to the well known 

3     [      i, avl        3Syv ,. ,. 

which is the equation normally solved for longshore currents. 
The most important boundary condition, however, is at the bottom. 

Here we have an oscillatory boundary layer in which the turbulent eddy 
viscosity can be assumed much smaller than above (Svendsen et al., 
1987). In contrast to cross-shore flow, however, the bottom shear 
stress is the (exterior) force resisting fhe driving radiation stress 
gradient. In this context the horizontal turbulent mixing-- 
represented by the d/3x(i/t 3V/3x) term--only redistribute the 
radiation stress contributions from one place to another, and the 
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integral of all radiation stresses from sea to shore must equal S at 
the breaker point. ' 

The boundary layer at the bottom will yield a relationship between 
the bottom velocity V^, and the bottom shear stress rv ^> and we assume 
that this relationship can be represented by a generalization of the 
expression derived by Svendsen & Hansen (1988) 

Ty,b " [f>Vt  SiJ  " 2 P  fw Uwb Vb (4-4) 

where fw is the friction factor for waves only, uwj> the oscillatory 
particle velocity in the wave direction. It is emphasized that 
although this expression formally may resemble the frequently used 
relationships between bottom shear stress and depth mean velocity 
(4.4) is actually based on the elaborate wave current boundary layer 
theory by Christoffersen & Jonsson (1983). 

The turbulent mixing term cannot be neglected even in a first 
approximation since that would change the degree of the differential 
operator in the x-direction and radically change the nature of the x 
variation of V (Longuet-Higgins, 1970). 

With the turbulence mixing as a modifying term, however, the 
longshore flow is very much a balance between the driving radiation 
stress gradient and the resisting rzv shear stress. Thus, if we for a 
moment assumed the right hand side of (3.5) and the turbulent mixing 
were uniformly distributed over depth then rzv would vary linearly 
over depth, with the largest values at the bottom. The small 
viscosity inside the bottom boundary layer and much larger value above 
therefore means that by far the largest velocity gradients will occur 
within the bottom boundary layer. Or, in other words, the velocity 
outside the boundary layer will only show a moderate variation in 
comparison to the variation inside the boundary layer. 

Mathematically this can be expressed by assuming that the first 
approximation to the longshore current velocity is independent of z. 
Thus we assume a perturbation expansion of the form 

V - V0(x) + c  V,(x,z) + ... 

Tyb " r0(x) + 
eri(x) + •.• 

vb - vbo + e vbi + 

(4.5) 

In order to obtain a consistent modification of the equations 
(3.5), (4.2) and (4.4) a scaling is required which introduces the 
assumption that the width of the surf zone xs - xt is « ht where ht 
is the depth at the transition point xt.  It is also utilized that 

^ ht Tgh; - 0(sx) (4.6) 

where sx - r is a characteristic value of the bottom slope.  With 

X - -sxx  ;  Z - z  ; 

the modified equations become 

€ ax h axj + az ["t azj - - ^sxy/4 (3.5a) 



pvt 

and 

3 
€ ax 
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f |Y ]        _       1 _J*_ V (4.4a) 
I 3z J 2 »/ts2       wb    b 

.b 

^n^-^-k^ (4'2a) 
-h„ 

The first order approximation shows that since V0 = V0(x) outside 
the boundary layer we get r0 - 0. 

The system also yields VD0 - V0 and hence 

I ^ -*'."(&).„ p»t       2 

V0 is then determined from (4.2), and since V0 is independent of z 
(4.2) takes the form of (4.3) 

3X h^j-'x-^2!? <*•« 

where rt is given by (4.7). 
Thus we have found that the first approximation V0 to the longshore 

velocity V is determined exactly by the equation which has so far been 
used in the literature for depth averaged longshore current 
velocities. Vbo, however, is not the depth averaged value of V as we 
shall see shortly. 

Carrying the computations through to second order we find that 

V(x,z) = V0 + eV1 

= Vb0 + ,Vbl+|(gxy-|^(,t|^))(z+h0)
2 

+ t~t    
Uwb Vbo(z+h0) (4-9) 

Here Vbl can be determined from the differential equation 

a 
("th ^j - \  "fw uwb Vbl - - F( ax '"t" 5v •  ° *"•* "wc> "Di ~ * (x)       (4.io) 

where F(x) is a known function of x determined from the first order 
solution. One important observation here is that (4.9) shows that the 
depth average of V is always larger than Vbo, Vbo — V0 is in fact the 
smallest velocity in the profile. 

The results also show that there is a correction Vbl to the bottom 
velocity Vbo found by the traditional longshore current equation 
(4.8).  This correction is entirely due to the fact that in (4.8) we 
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use V0 to evaluate the turbulent mixing, not V. Since VD1 will 
normally be a small term, we may get a good approximation to V by 
neglecting V^.  That yields 

V(x,z) - Vb0 + | &h-  (z+h0)
2 + 1^- uwb Vb0(z+h0)    (4.11) 

where 

Siy" gxy-g^ ["t gf\ (4.12) 

5. NUMERICAL RESULTS FOR THE LOCAL LONGSHORE CURRENT VELOCITY PROFILE 
For both V0 and Vx, a full solution for the local profile requires 

that we solve the differential equations (4.8) and (4.10) for VD0 and 
Vbl, respectively. Properly done this also implies determination of 
the wave height variation across the surf zone to establish the 
variation of SXy. 

To illustrate the nature of the results, however, let us neglect 
the effect of the turbulent mixing and concentrate on the local 
velocity profiles only.  This implies that gXy - gXy in (4.11). 

Using Svendsen's (1984) description of the surf zone waves with a 
shape factor B0 - rp/H

2 to account for the breakers we get 

    frfl2   c2  . 
Vw - g[hj hBo -£ sina cosa 

where a is the angle of incidence for the waves. Approximating the 
3vwww/3z term in a way that satisfies the known requirements for that 
term (for details see Svendsen & Lorenz, 1988) then yields 

5 (Hi2  c2  3h  . 
°xy  2 \h) gh 3x 

and 

" 3x 
3Syv    , 3h |¥|2 (5 „   _ A h]  . 
-^ ~  pgh li   [hj  [l B° + 3 H* Lj SlnQ COSa 

where the second term originates from the shear stress created at wave 
trough level by the surface roller. A is the roller area and L the 
wave length. 

Fig. 1 shows some examples of velocity profiles obtained by using 
the following values of the parameters. 

Phase velocity c - /gh 

Bottom friction coefficient       fw - 2»10~
2 

Breaker shape B0 - >p/H
2 - 0.08 

Ah 
H2L 
Ah Roller contribution rr=tr - 0.09 

Eddy viscosity i/t/h/gh - 0.015 
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CA 1-, 

hx = 1/25 
a = 10.0 

H/h      =     0.4    0.5      0.6 

fA 

hx = 1/50 
a - 10.0 

0.0 0.1 0.2        0.3 0.4 0.5 

V/VgR 

1-1 
H/h      =     0.4   0.5 0.6 

o.a- 

, 

0.6 

0.4 

0.2- I 
0.00      0.05       0.10       0.15       0.20      0.25 

V/#? 

C/h 

hx = 1/25 
H/h = 0.5 

1-1 
a=    1 3.0 2( 3.0 

0.8 

0.6 

0.4 

0.2- 

 1  1 

hx = 1/50 
H/h = 0.5 

0.2 0.4 0.6 

V/l/gh 

f/h 
a=     10.0 20.0      30.0 

0.0 0.1 0.2 0.3 0.4 0.5 
V/l/ih 

FIG. 1. Examples of longshore current proviles for different angles 
of incidence a, bottom slopes hx and wave height to water 
depth H/h.    No horizontal mixing. 
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k £/h (height over bottom) 

MWS 

Steady uniform current 
(logarithml 

Predicted longshore 
current profile 

Oscillatory bottom 
boundary layer 

FIG. 2.   A comparison between a longshore current profile and a 
logarithmic profile as in a river. 

Beach at x = 0 m 

Breaking ooint at 
x = 2.51 m 

Fig. 3.   Measurements of longshore velocities at three different 
elevations above the bed (from Visser, 1984). 
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The absence of turbulent mixing makes the calculated velocities 
larger than real. The important conclusion, however, is that the 
velocity profiles are very different from the logarithmic profile 
sometimes assumed in analogy with open channel flow. Fig. 2 shows a 
comparison between the two profiles. In fact the assumption of a 
uniform velocity over depth would be much closer to the real 
velocities than would a logarithmic profile. It also implies that the 
near-bottom velocities are significantly larger than for a logarithmic 
profile. 

It may be emphasized that since the classical longshore current 
velocity found e.g. by Louguet-Higgins corresponds to V - V]-,0, the 
real velocities will always be 10-20% larger than those found by 
classical theory. 

Fig. 3 shows measurements of longshore currents in the surf zone at 
three different elevations above the bottom (from Visser, 1984). We 
see that the nature of the variation of depth is qualitatively in 
agreement with the theoretical profiles shown in Fig. 1. 

6.  COMBINED LONGSHORE AND CROSS-SHORE VELOCITY PROFILE 
In the simplified case described here of no coupling between the 

cross-shore and the longshore current (the UV term in (3.2)) the total 
3D velocity profile can be constructed by a simple vector addition of 
the cross-shore and the longshore velocity profiles determined 
independently.  Such a 3D profile is shown in Fig. 4. 

MQan currents 
not defined above 
wave trough 

Wave  trough level 

FIG. 4.   The full 3-D current velocity profile as it occurs in a 
situation with both an undertow and a longshore current. 

The result shows features that are of significant importance for 
the sediment transport on a coast. 

From the knowledge of the fact that a strong undertow will be 
present in a surf zone even with no net cross shore current, we know 
that there is a tendency that sediments are being carried seaward by 
the current. The 3D profile, however, shows that close to the bottom 
the current direction may actually deviate 45° or more from the depth 
mean current vector which in this case is purely along-shore. 
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Moreover, if e.g. the longshore and crosshore bottom current 
velocities are of equal magnitude the total current velocity is 40% 
larger than given by a depth averaged model. Hence it can be quite 
misleading to use depth averaged models to predict bottom currents in 
the  surf zone. 

The predictions of the described 3D velocity profile are 
qualitatively confirmed by the tracer sediment observations by Ingle 
(1966).     Fig.   5 shows a summary of his results. 

Wave motion & 
longshore current 
of "equal  influence" 

Strong longshore 
current 

Weak longshore 
current 

*it Dominant and secondary paths of tracer grains 
on the foreshore slope 

Path of tracer grains within and immediately 
shoreward of the breaker(plunge)  zone 

Path of tracer grains seaward of the breaker 
zone 

FIG.    5.       Sediment   movements   in   and   near   the   surf   zone.       Summary   of 
tracer observations by Ingle  (1966). 
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