
CHAPTER 50 

On the Partition of Horizontal Momentum Between 
Velocity and Pressure Components Through the Transition Region 

of Breaking Waves 

David R. Basco! and Takao Yamashita^ 

Abstract 

When a water wave breaks, it undergoes a complicated interchange of 
total, depth integrated horizontal momentum between that part due to the 
velocity field and the part that can be assigned to the pressure 
distribution beneath the surface.  This partition of total momentum for 
a strong, plunging breaker is described by a relatively crude model in 
which the horizontal velocity profile (over the vertical) is schematized 
in two layers and the pressure distribution is related to a hydrostatic 
distribution for the given water depth.  An example calculation at four 
locations across the breaking transition region on a plane beach is 
utilized to demonstrate the principles of the model.  The limitations of 
the approach which assumes momentum conservation in a reference frame 
moving with the wave celerity defined at the wave crest are presented, 
but await verification.  The ultimate goal is a relatively simple model 
to predict the transition width of breaking waves (spillers, plungers 
and intermediate types) for plain and bar-trough beaches. 

1.0 Introduction 

Svendsen (1984) defined the wave breaking transition region as the 
distance from the break point (vertical free surface) to the transition 
point where the time-mean water surface changes from relatively level 
to an increasing slope (wave set-up).  Figure 1 displays these two end 
points along with the plunge point (pp) and an intermediate point (ip) 
which shall be discussed later.  At the transition point (tp), the 
bore-like wave with surface roller area (A) encompasses a trapped mass 
of fluid which is transported within the inner, surf-zone region on 
plane beaches. 

A qualitative description of the transition region was presented by 
Basco (1985).  The overturning, plunging jet pushes on the trough fluid 
ahead like a wave paddle to create the surface roller but is left 
behind as it generates a new, bore-like wave with completely new wave 
kinematics.  A simple, empirically based transition zone model designed 
to match the Svendsen (1984) inner-region model was then presented by 
Basco and Yamashita (1986) at the 20th ICCE in Taiwan.  The surface 
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roller area A(x) was speculated to increase linearly from zero at the 
plunge point to a value equal to 0.9 H2 at the transition point as 
suggested by Svendsen (1984).  Fig. 2 from experimental data by 
Papanicolaou and Raichlen (1987) suggests that A(x) varies nonlinearly 
as the squared distance from the plunge point to the place where A ~ 
0.9 Hj, .  It is not clear however that these researchers used the same 
definition of surface roller area, A as first suggested by Svendsen 
(1984). 

This paper extends these previous efforts by developing a 
quantitative model for the horizontal, total depth integrated momentum 
as partitioned between the momentum flux due to the velocity and the 
pressure induced momentum component.  This is done in a reference frame 
moving with the wave celerity defined by the wave crest.  Total, 
vertically integrated, horizontal momentum is conserved in this system. 

Section 2 presents the general theory and discusses the limitations 
of the approach.  Theoretical expressions are derived in Section 3 for 
the four locations in Fig. 1 and a general expression is formulated for 
any location.  An example computation to demonstrate the plausibility of 
the formulations is then presented in Section 4.  The paper concentrates 
on strong plunging breakers on a plane beach with the goal to develop 
relatively simple ways to predict the transition width.  And, eventually 
to also model the transition width on a bar-trough profile where the 
surface roller grows and then decays rapidly as the wave "reforms" in 
the trough. 

2.0 Theoretical Considerations 

2.1 Steady Flow Momentum Balance.  The vertically integrated, total 
horizontal momentum (m) per unit width and unit mass density (p)   can be 
found from 

u2(z) + i p(z) dz (1) 

where z is the vertical coordinate from the floor (z = o) to the free 
surface (z - h) and u(z), p(z) are the horizontal velocity and pressure 
distributions beneath the surface, respectively.  From standard 
definitions of the volumetric flow rate per unit width (q), momentum 
correction coefficient (a), and a pressure correction coefficient (a) 
relative to hydrostatic pressure (e.g., see Chow, 1959, p. 32) this can 
be written 

fgh2 (2) 

m = m-.T + m-n (3) 

so that total momentum is partitioned between the momentum flux part 
(mv) and the pressure component (m„).  Four initial conditions are 
required to define m, namely the water depth (h), velocity magnitude 
(v - q/h), velocity profile (a) and pressure distribution (a). 
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For the classical hydraulic jump (Belanger, 1849), a uniform 
velocity profile (a - 1) and hydrostatic pressure distribution (a = 1) 
are assumed both upstream and downstream of the surface roller.  This 
reduces the problem to only two initial conditions and two unknowns so 
that together with the conservation of mass, a unique solution (the so- 
called sequent-depth equation) is possible for the downstream 
conditions.  Madsen and Svendsen (1983) utilized a theoretical velocity 
profile for the flow reversal with depth through the surface roller and 
an empirical, vertical turbulent momentum exchange coefficient to 
theoretically derive the jump profile and jump length.  Basco and 
Yamashita (1986, Fig. 6, p. 956) used this theory to present the 
partition of mv(x) and m„(x) across the jump.  The surface roller, flow 
reversal causes a »  1.0 through the jump and results in nonlinear 
distributions of mv(x) and m„(x) components even though a(x) - 1 is 
taken as a first approximation. 

2.2 Unsteady Flow Momentum Conservation.  The integral, control 
volume definition of linear momentum conservation for unsteady flow can 
be written in vector terminology (V is the vector velocity field) 

at 
(pV) V . ds - S F (4) 

the first term (LHS) is the unsteady flow contribution over the control 
volume (V) and the second is the momentum flux through the, control 
surface (s).  The RHS is the sum of all external forces (F) responsible 
for the changes taking place on the LHS. 

In this paper, we make the unproven assumption that the unsteady, 
time-derivative term on the LHS is small relative to the other terms in 
the momentum balance.  Therefore we neglect the time-derivative term in 
this paper.  For a breaking/broken water wave with dominant flow 
direction parallel to the bottom, the momentum balance in this direction 
is then given by Eqn (1) if we also neglect the boundary shear stress. 
And, if we operate in a moving coordinate system. 

2.3 Non-accelerating Coordinate System.  We can perform a Galilean 
transformation of our momentum conservation equation by moving our 
control volume at constant speed, i.e., by using a non-accelerating 
coordinate system.  To remain phase locked with the wave crest we can 
use the wave propagation celerity as defined by the crest. 

In this paper, we make the experimentally demonstrated assumption 
that the breaking/broken wave celerity through the transition region is 
approximately constant (see e.g., Basco, 1985, Fig. 4, p. 175). 

2.4 Time-averaged Momentum Balance.  Time-averaging Eqn (1) and 
then subtracting the hydrostatic pressure force measured from the mean 
water surface (ij)   for a water wave produces the wave-induced momentum 
thrust or radiation stress.  Across the transition region, by 
definition, fj  is constant so that if we again neglect the bottom shear 
stress, the radiation stress must also be constant based on the time- 
averaged momentum balance.  One way for this to occur is for each phase- 
locked section of the breaking/broken wave moving through the 
transition to have constant total momentum.  This gives added confidence 
to our assumptions cited above. 
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3.0 Transition Region Theory 

3.1 Definitions.  Consider the velocity profile u(z) beneath a 
breaking wave as shown in Fig. 3 relative to a fixed reference frame. 
We schematize the velocity distribution into two major segments; (1) a 
crest region velocity Vc(x) and (2) a trough region velocity Vt(x) that 
act over b(x) and d(x), respectively.  Note that one key feature of 
wave breaking is that the crest region and trough region absolute* 
velocities are in opposite directions. 

It is useful to define the following dimensionless ratios using the 
wave crest celerity (c) as the reference velocity: 

Vc 
* " — (5) 

(6) 

therefore 
|vt| 

A? - —— (7) 

The wave crest celerity for shallow water wave breaking is approximately 

c2 - ghc (8) 

where hc is the total water depth at the wave crest. 

3.2 Moving Reference Momentum Balance.  The counterpart of Eqn (1) 
for a control volume moving with speed (c) is 

* m    — [u(z 
, . 
o 

m* - ii 
* 

»v + m* 

+ c]2 + \  p(z) dz (9) 

(10) 

where now total relative momentum (m*) is partitioned into relative 
velocity (mv) and pressure (m„) components. 

3.3  Schematized Transition - Strong Plunging Breaker.  Using the 
qualitative model and ideas presented in Basco (1985), we schematically 
depict the velocity and pressure distributions for a strong, plunging 
breaker on a plane beach in Fig. 4.  The crest velocity begins to exceed 
the wave celerity (A > 1) at the break point and continuity results in A 
» 1 at the plunge point for a strong plunging jet.  At this point, the 
surface roller begins to form (A > 0) and grows in size as the plunging 
jet slows down (A < 1) and exchanges its momentum through turbulent 
shear stresses with the trough fluid below.  The overturning jet of a 

Absolute when referenced to a fixed (Eulerian) observer. 
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breaking wave can be seen to perform two primary tasks in the transition 
region, namely: 

(1) to create a surface roller, with trapped mass of fluid that 
propagates with the wave celerity, and 

(2) to reverse the direction of the trough velocity from that 
opposing the crest, to that in the same direction as the 
particles in the surface roller. 

At the transition point, or end of the transition region, the velocity 
profile beneath the crest is that of a propagating bore (Svendsen, 
1984). 

The corresponding pressure distribution changes are also shown in 
Fig. 4.  Streamline curvature causes the pressure to remain less than 
hydrostatic (a < 1) through the break point.  The pressure within the 
plunging jet is essentially zero if we assume it behaves as a free jet 
so that the pressure falls to essentially that approximated by 
hydrostatic pressure in the trough fluid. The pressure distribution 
then rises again to reach full hydrostatic pressure (a - 1) at the 
transition point. 

These schematic ideas are translated into quantifiable relations 
at four representative locations within the transition region. 

(i)  Break Point (bp) 

Fig. 5 depicts the absolute velocity structure (f < 1) and assuming 
A - 1 (Vc - c), the velocity distribution for an observer moving with 
the wave crest, i.e., the relative velocity is also shown acting over 
the depths indicated.  The velocity momentum (mv) is then given by 

<Vt + c)
2dt = [(A£)c + c]zdt -  c^UC + - c2f l)2dt (11) 

and is taken here to act over the depth (dt) which is essentially 
trough depth for a strong plunging breaker. Using Eqn (8) for c2 

multiplying by unity (hc/hc) gives 

the 
and 

* 
my (H  + I)2 ghc

2 (12) 

The first two terms in parentheses are dimensionless so that the last 
term (ghc

2) gives the physical scale to the momentum and/or can be used 
to normalize the equation. 

The pressure related momentum is simply 

(a) w (13) 

so that the total, relative momentum at the break point (!%„) becomes 

rabp (A? + l)2 + | a ghc (14) 
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Four quantities must be specified [(d^/hc),   £, a, and hc] to define im-,p 
if we assume A — 1 at the break point. 

Using the trough relative Froude number (F*) as a measure of the 
strength of the breaking wave defined as (Stive, 1984) 

(F?)2 - 
(Vt + c)' 

gd. 
(15) 

this becomes at the break point 

<F£)2 - (A£ + 1) 
VI 
d 

1/2 
(16) 

or combining Eqn (12) and (16) we have 

mv  hr 
(F?)2 -  ; 

gV 
(17) 

so that we need only two quantities (dt/hc and £) to specify the 
incoming relative Froude number if we again take A — 1 at the wave 
breaking point. 

(ii)  Plunpe Point (pp) 

Now, A > 1 (Vc > c) and again taking £ < 1 as depicted in Fig. 6 
with Vc acting over a contracted, free jet width b(x) with p — o gives 

-U€ + D2 + ^(A - I)2 gh§ (18) 

with the plunging jet now contributing to the relative momentum as given 
by the second term within the brackets. 

With the pressure zero in the overturning jet, the pressure 
momentum coefficient a becomes 

l/2gdt': 

l/2gh 2 
(19) 

if we assume the streamlines within the trough are relatively flat to 
create a hydrostatic pressure distribution.  This then results in 

[l Ml 
2 h 

I cl 

1       u  2 - —  ghc
z (20) 

when the wave crest height hc is used as reference.  Combining gives for 
total relative momentum at the plunge point (mpp) 

* (A| + 1)2 + ki*l(A - 1)2 + I Shc (21) 



TRANSITION REGION OF BREAKING WAVES 691 

Comparing Eqn (14) at the break point and (21) we see that if total, 
relative momentum is conserved, and when the first term within the 
brackets also remains relatively unchanged, then the added momentum of 
the overturning jet is balanced by the decreased pressure momentum 
within the trough.  Four quantities [dt/hc, b/hc, A, and hc] must again 
be specified to calculate m-p if we now also assume that £ remains the 
same as at the break point. 

(iii)  Transition Point (tp) 

Now lets move to the end of the transition region and consider the 
transition point (tp) as depicted in Fig. 8.  We here define the 
velocity in the trapped surface roller as Vs to distinguish it from that 
within the plunging jet (Vc) that is slowing down and being left behind 
[A •+ o, b •* o] .  The surface roller area (A) grows as shown in Fig. 2 
and consequently so does the thickness of the trapped surface roller 
(e). 

The relative velocity momentum becomes 

d(xi (A? - 1)' Shc (22) 

and the fact that the trough velocity Vt is now in the same direction as 
the wave celerity produces the negative sign within the bracketed term. 
This translates into a decrease in relative importance in the velocity 
component of the total momentum. 

The pressure component must therefore increase and we take a 
give full hydrostatic pressure as a first approximation, or 

1 to 

oShc2 (23) 

so that the total relative momentum at the transition point (ni(-p) 
becomes 

* mtp „"(A? - 1) 2 + i ghc (24) 

We again need four quantities [d/hc 
n>tp- 

(iv)  Intermediate Point (ip) 

(or e/hc), A, £ and hc] to compute 

This is obviously the most complicated region between the plunge 
and transition points (see Fig. 4).  The plunging jet velocity slows 
down (Vc < c) as the surface roller moving with the phase speed (Vs = c) 
expands from e - o at the plunge point to e at the transition point 
where A - 0.9 HD .  The most important physical factor is the reversal 
in direction of Vt so that the (A£ + 1) term becomes (A£ - 1).  Also Vt 
acts over an expanding width d(x) as b(x) -* o which is a consequence of 
the turbulent mixing between the jet and trough fluids.  Fig. 7 depicts 
both absolute and relative velocity distributions at an intermediate 
point where the trough velocity is still opposing the wave celerity.  In 
general, the velocity momentum can be written 
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pi(*« ± I)2 + j^(A   -   1)2 
c c 

ghc (25) 

and the pressure momentum 

i ghc
2 (26) 

so that the total relative momentum at an Intermediate position becomes 

"ip 
pi(A? ± !)2 + M*1(A . 1)2 + I a ghc (27) 

Eqn (27) reduces Eqn (14) at the break point, to Eqn (21) at the plunge 
point and to Eqn (24) at the transition point when the appropriate 
assumptions are made.  Consequently it is also the general expression 
for total relative momentum anywhere within the transition region. 

In general, six quantities [d/hc, A, £, b/hc, a, hc] are needed to 
use Eqn (27).  Two additional expressions can be e(x) as related to A(x) 
and some relation for b(x) -» o in the overturning jet along with the 
fact that e(x) + b(x) + d(x) - hc. 

4.0 An Example Computation 

Consider a strong plunging breaker on a plane beach with crest 
height hc of 13.5 ft (4.1m) at the instant of breaking.  The water depth 
in the trough, immediately ahead is about one-half this depth (dt/hc = 
0.5) and the trough velocity is about 20% of the crest velocity (£ - 
0.2, Stive, 1984).  The situation is schematized in Fig. S and 
summarized in Table I.  Assume also that at the instant of breaking 
(front wave face is vertical) the streamline curvature is such that the 
pressure coefficient a is 0.6. Using Eqn. (14), the relative velocity 
momentum, mv is calculated to be 4221 ft /sec

2 (120 m /s  )  and the 
"k ^    9      *}  9 ^ pressure momentum, nip is 1759 ftJ/sec' (49 m-Vs''' resulting in a total 

relative momentum, m* of 5980 ff'/sec^ (169 m-ysec^)•  In other words, 
' ' o    9 

the total momentum is about 6000 ft-ysec of which the initial partition 
at breaking results in 71 percent due to velocity and 29 percent due to 
pressure. 

From Eqn (16), the relative trough Froude number, Ft is 1.7.  This 
value would indicate a strong plunging breaker (spilling breakers have 
much lower values) but a weak bore or hydraulic jump.  The fluid flow in 
the trough in the relative, moving coordinate system is supercritical. 

As the wave overturns, the crest height (hc) decreases.  The 
example shows hc values (col 3) of 13.1 ft (4.0m) at the plunge point, 
12.7 ft (3.9 m) at the intermediate point, and 12.3 ft (3.7m) at the 
transition point or end of the transition region.  These values were 
estimated for this example although they also could have been calculated 
if the total relative momentum m* was assumed constant at 6000 ft^/sec • 

The example shows that using these hc values and the other given 
conditions which are all plausible and or referenced magnitudes, that 
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the partition of momentum changes through the transition.  At the plunge 
point, we have taken the value of A£ the same as at the break point but 
increased A to over 2 as demonstrated numerically by Cokelet (1976) and 
experimentally by Kjeldsen (1984).  The result is more velocity momentum 
with m* now being 5300 ft3/sec2 (150 m3/s2) or almost 89 percent of the 
total.  And, a full 22 percent of the total is found in the jet 
momentum.  The pressure component drops to only 960 ftJ/sec^ (20 
m3/sec2) which is 11 percent of the total m* of 5990 ft3/sec2 (170 
m3/s2). 

At the intermediate section, the pressure begins to recover with m_ 
now 1998 ftJ/sec  (57 nr/s') or 33.4 percent.  The velocity momentum, 
m* has dropped to 3978 ft3/sec2 (113 m3/s2) or 66.6 percent and of this 
amount, only 73 ft 3/sec2 (2 m3/sec2) remains in the crest region due to 
the plunging jet.  Clearly, the original, plunging jet momentum is 
decaying and being left behind. 

At the end of the transition region, the pressure component (m„) 
has now risen to 2433 ft3/sec (69 m3/s2) or 41% of the total which is 
the highest across the entire region.  Conversely, the relative velocity 
momentum, m* is the lowest [3553 ft3/sec, (101 m3/s2), 59 percent] 
since all the particles beneath the crest are now traveling in the same 
direction as the wave.  The given conditions employed in these 
calculations were aided by experimental data found in Stive (1988) and 
Svendsen (1984).   At the end of the transition region, the relative 
velocity momentum still dominates the pressure component but to a far 
lesser extent. 

5.0  Summary 

All of these values are summarized in Fig. 13 for the four "points" 
across the transition region.  Smooth curves have been drawn in to 
demonstrate the momentum partition trends for this example.  These 
results, although a delicate balance and sensitive to the individual 
values used for each given condition at each section, can be looked upon 
as somewhat indicative of the general trends that must be present, 
namely: 

(i)  the velocity dominates in all cases and is largest at the 
plunge point of a strong, plunging breaker; 

(ii)  the trough velocity is the key variable, and the physical 
processes present to reverse its direction dominate the 
transition region; and 

(iii)  the pressure is secondary in all cases and is smallest at the 
plunge point, then recovers to attain its greatest influence 
at the end of the transition region. 

For a strong, plunging breaker on a plane beach and within the 
limitations and assumptions made throughout, we have developed a crude, 
quantitative model of the relative momentum and its partition.  The role 
of the plunging jet momentum is to (1) form a surface roller and (2) 
reverse the trough flow direction over the trough depth.  It becomes 
quite apparent that the relative strengths of the plunging jet momentum 
and the trough momentum control the time and hence spacial extent over 
which this transition process takes place. At one extreme is a 
relatively rapid, short transition as in this example for the strong 
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plunger. 

The opposite extreme is a weak spilling breaker.  The small 
overturning jet at the crest is still present but barely discernable. 
It's role remains the same but the transition requires a wide distance 
for the full surface roller to form and for the trough flow to be 
reversed over the entire vertical depth. 

However, in both extremes, the strength of the trough velocity is 
believed to be the key variable.  In nature, at some beaches, we can 
simultaneously observe waves breaking on relatively plane sections, 
waves breaking on bars and reforming in the deeper trough regions and 
waves breaking in the swash zone right on the beach.  In all cases, the 
strength of the return flow in the trough appears to control the entire 
process.  Consequently, it is felt that future numerical and 
experimental research (both laboratory and field) on breaking waves 
should give greater emphasis to defining the character of the trough 
flow. 
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