
CHAPTER 48 

STATISTICAL PROPERTIES OF THE MAXIMUM RUN OF IRREGULAR SEA WAVES 

by Akira Kimura 

ABSTRACT 

The probability distribution of the maximum run of irregular wave 
height is introduced theoretically. Probability distributions for the 
2nd maximum, 3rd maximum and further maximum runs are also 
introduced. Their statistical properties, including the means and 
their confidence regions, are applied to the verification of 
experiments with irregular waves in the realization of a "severe sea 
state" in the test. 

1. INTRODUCTION 

The importance of bringing the statistical nature of irregular sea 
waves into the design concepts of coastal structures has been widely 
recognized. Hydraulic tests with irregular waves in a wave tank have 
become one of the standard techniques to investigate dynamic 
properties of coastal and ocean structures. Simulation and generation 
techniques of irregular sea waves have been developed and applied for 
this purpose. 
The group nature of irregular sea waves, on the other hand, has been 
clarified recently. Since there is a correlation between consecutive 
wave heights (and period), high waves (or low waves) tend to arrive in 
groups. This means that high waves tend to arrive intermittently in 
groups and that there are long durations between them, in which low 
waves consecutively arrive. Irregular wave simulation techniques are 
mainly directed to simulate the averaged properties of irregular sea 
waves, i.e. wave spectrum, probability distribution for wave height 
and period, etc. A long term steady state for these properties is 
designed to be simulated in the techniques except for the simulation 
of definite wave profiles. However, those properties measured in a 
short duration are not always guaranteed to be the same as the 
designed ones but rather distribute around them statistically. 
Therefore, hydraulic tests which are carried out in durations in which 
no high wave run arrives may bring about an under-estimation of wave 
effects. Insufficient estimation from the test, especially under- 
estimation, may induce deficiencies in the design for prototype 
structures. Model tests always have a possibility of missing the 
temporal "severe sea state" if the test is not sufficiently long. 
However, there have, in fact, been no established criterion used in 
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the verification of test results regarding whether the severe sea 
state is realized during the test. In addition to ordinary criteria, 
then, a new criterion which can be a measure for the temporal state of 
irregular sea waves becomes necessary and the property of the high 
wave group, especially its maximum value, may be suitable for this. 
This study aims at clarifying the statistical properties of the 
maximum run of high waves which may be a good measure for the temporal 
"severe sea state". The statistical properties of the 2nd maximum, 3rd 
maximum, and further maximum runs of high waves are also clarified and 
confidence regions for their means are given and explained in the 
examination of the effectiveness of the model test in this study. 

2. PROBABILITY DISTRIBUTION OF THE MAXIMUM RUN OF HIGH WAVES 

The author has introduced the probability distribution of the maximum 
run of high waves to apply for "short term overtopping" (Kimura,1984). 
It can be summarized as follows: 

Assuming the time series of wave height to be the Markov chain, the 
probability distribution of a run of waves which exceed the threshold 
wave height (ht) consecutively is given as (Kimura,1980) 

P1(i)=p
i-1(l-p) (1) 

in which p is given by 

J   P0(h1,h2)dh1dh2 (  
P=  (2) 

'\    J\ 

ht 
Q0(hl)

dhl 

PQ is the two dimensional Rayleigh distribution while QQ is the 
Rayleigh distribution. These are given as follows (wave height is 
normalized by the mean wave height throughout this study): 

P0(h1,h2)=h1h2/A-I0(h1h2p/A)exp{ -(h1
2+h2

2)/ * A} (3) 

Q0(h1)= TThj/2 exp(- irh^/4) (4) 

A=4/TT2-P2 (5) 

in which IQ is the modified Bessel function of the 1st kind, and p is 
a correlation parameter between consecutive wave heights. This has the 
following relation with a correlation coefficient of consecutive wave 
heights. 

Yh={E( TTP/2)-(1/2)(1-IT
2
P
2
/4)K(TTP/2)-'T/4 }/(1-TT/4)     (6) 

K and E are the complete elliptic integrals of the 1st and 2nd kinds, 
respectively. 

The probability distribution of the maximum run in a population of 
high wave runs of size N is introduced as follows: 

The probability that the run is equal to or smaller than I -1 is given 
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I-I 
P2(i)=  I  Pi'"1(l-P)=(l-Pi_1) (7) 

Therefore, all runs in the population are equal to or smaller than £• - 
1 giving (1-p-^ ) , assuming all runs to be independent. On the other 
hand, the probability that at least one or more runs _in ^he population 
are equal to or greater than I is given as l-(l-p£~ ) . In the same 
way, the probability that at least one or more runs are equal to or 
greater than I +1 is given as l-Cl-p^). The probability that the 
maximum run becomes I   is, therefore, given as 

P3(i)=(l-p
i)N-(l-pi~1)N=exp{ N-ln(l-pi)} -exp{ N-ln(l-p i-1)}  (8) 

in which In is the natural logarithm. 
Equation (8) is shown in Fig.l; (a) N=100 and (b) N=1,000. The 1/10 
maximum wave (solid line), the significant wave (chain line) and the 
mean wave (broken line) heights  are used for ht respectively. 

N=100 

(a) N=100 

N=1000 

(b) N=1000 

Fig.l Probability distribution of the maximum run of high waves 



658 COASTAL ENGINEERING— 1988 

Example 1 (duration and number of runs) 

Giving a duration and wave properties, the probability distribution of 
the maximum run of high wave is given as follows: 
An expected number of high wave runs N within a duration D is given by 

N = D / i.T t m (9) 

in which is a mean of the total run (recurrence interval of the 
runs) of high waves and T is a mean wave period. We assume here a 
steady sea state, its spectrum to be the Pierson-Moskowitz type (for 
simplicity this spectrum is used throughout this study ; the spectrum 
gives affect on the correlation parameter p in eq.3, Battjes and van 
Vledder,1984), ht=1.6 (significant wave height) and Tm=10s. The 
averaged value of the total run is given by (Kimura,1980), 

lt  = l/(l-p') + l/(l-p) (10) 

in which p is given by eq.(2) and p' is given by 

fht     fht 
J0      J0      P0(hl'h2)dhldh2 

Q0(h1)dh1 

(11) 

Substituting P =0.247 (Pierson-Moskowitz spectrum; Kimura,1980) and 
=10.2. The expected number of high wave runs is ht=1.6, we obtain 

calculated as 

N = D / 10.2 X 10 (12) 

If we use 1 week for the duration (D=604800s) we obtain N=5929. 
Substituting values of p and N into eq.(8), we obtain the probability 
distribution of the maximum run of wave height (h > significant wave 
height) which appears once a week. The relations between ht and I t 
for the representative wave heights are listed in Table-1. 

Table-1 ht and 

ht \ 
1.0      (H        ) 

mean 
4.7 

1.60    (H1/3) 10.2 

2.03    (H1/10) 30.1 

3. MEAN OF THE MAXIMUM RUN OF HIGH WAVES 

From eq.(8), the mean of the maximum run is introduced as 

("Di+1 N 

I 
i=l 

NL 
1-pi 

(13) 

Since this equation is difficult to carry out in practice when N and i 
are large, the following approximation is applied (Longuet-Higgins, 
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1952)- 
Applying £ Q,   which is given by the equation N'p^°=l, (1-p  )  in 
eq.(8) is written as 

(1_pi)N= (1_pi-^/N)
N 

Since p<l, for large values of N the above equation reduces to 

(l_pi- 4)/N)
N = exp(-p ^') (14) 

in which I'= 

and 

i- ,<r.0 

-ln(N)/ln(p) (15) 

The general form of eq.(14) is shown in Fig.2 (solid line). If N is 
sufficiently large, eq.(14) asymptotically approaches to 

(16) 

in which £#'    is a point which makes equal the upper and lower 
shadowed portions between eq.(14) and eq.(16) (Fig.2), 

0 £'< £*' 
exp(-p l  )*; 

[   1 £'> V 

V = |  l-exp(-p* )d 
Jo 

= - Y/ln(p) 

exp(-p* )d 

(17) 

in which Y is Euler's constant(=0.5772. . .). In the same way, (1-p* 
)  in eq.(8) is given approximately as 

(1-p /-VN)N = exp(-p^'-1) 
0      £'<£#'+l 

. 1      I '>£*'+l 

From the definition, the mean of the maximum run is given as 

(18) 

-1* I       *P3U) 
=1 

From eqs.(16)  and  (18), 

I •I* = L - (20) 
£  = £Q+£^ 

Since   £n+ £*'   is  not an  integer  in 
:eger 

nee   £Q+£%    is  not an  intege 
general,      ^1-x-   is   the   ints 
between    ^Q+^#'   and    IQ+ I *' - 
Extending   the   definition   for 
into  real  numbers  and approximating 
the   probability   of    £     between 

(19) 

eq.(14) 

K 

£0+ and 
;Q"* 

-.'+1      with Fig.2 Approximation of eq.(14) 

0 + i*' + 1/2 = -(ln(N) + Y ) / ln(p) +1/2 

eqs.(16) and (18), we obtain an 
expected mean of the maximum run as 

-1* (21) 
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If we apply eq.(l) for the probability of 
instead, we obtain, 

in the same interval 

f 0+ * + „ 1 r 0+ * 
o + W +     i p^-1(i-P)di / 

-(ln(N) + Y )/ln(p) - l/ln(p) + p/(p-l) 

'+1 „ , 
pi-1(l-p)di 

(22) 

Figure 3 shows the relation between t-y* an& N. The approximation of 
eq.(22) is used in the calculation. 

Example 2 (mean of the maximum run) 

If we use the same conditions applied in Example 1 (ht=1.6 ; 
significant wave height, Tm=10s), the expected mean of the maximum 
runs during 1 day, 1 week and 1 month are calculated as follows. 

Table-2 D,N and I lx 

duration number of waves number of runs maximum run (eq.22) 

1 day 
1 week 
1 month 

8640 
60480 
259200 

847 
5929 
25412 

6.0 
7.5 
8.6 

The number of runs is given by dividing the number of waves by the 
mean of the total run (10.2; ht=1.6). 

Fig.3 Expected mean of the maximum run 
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4. VERIFICATION OF THE EXPERIMENTAL RESULT 

As explained in the introduction, high waves tend to arrive in 
groups. Therefore, if a short duration for the model test is applied, 
the possibility of missing high wave runs during the test may be 
large. Since a high wave or its group may actually have the greatest 
effect on coastal structures, the reliability of the model test is 
highly affected by the frequency of high waves and high wave runs 
which appear during the test. If a long duration is applied for the 
test, the statistical properties of the high wave run can be 
investigated by the ordinary theory (Kimura,1980). However, if a short 
duration is applied, the verification of the test is difficult due to 
an insufficient number of runs. When tests with 100 irregular waves 
are carried out, for example, we can investigate the ordinary 
properties such as the power spectrum, wave height distribution, etc. 
However, it may be difficult to investigate the results regarding the 
severity of the sea state for the model, since only 10 (roughly) high 
wave runs are expected if we apply the significant wave height for hfc. 
In this section, for verification of the efficiency of the model test 
which is short in duration, the ordered statistics of the run of high 
waves are investigated. 

In the population of N independent high wave runs of h > ht, the 
probability that i runs are equal to or greater than £ and that the 
other N-i runs are equal to or smaller than £ -1 is given as 

PG( i)
i-PL(i)

N-i (23) 

in which Pn and P^ are the probabilities that a run is greater than or 
equal to £   and equal to or smaller than £-1  respectively, 

PG(i)=   I        p^'-1(l-p)=pi-1 G     £' = £ 
l-\ , (24) 

PL^>= I     p^-1(i-p)=(i-P
i-1) 

•£'=1 

There are ^C^ combinations to select i runs among N runs. Therefore, 
the probability that all i runs selected are equal to or greater than 
£  and that the remaining N-i runs are equal to or smaller than £ -1 
is given as 

NCi-PG(i)
i-PL(^)

N-i (25) 

The   probability   that   at   least   n+1   (n=l,2,)   runs   are   equal   to   or 
greater  than  £    is  given as 

1-     I    NCi-pG^ )i-PL(i)N_i (26) 
i=0 

In the same way, the probability that at least n+1 runs are equal to 
or greater than £ +1 is given as 

1- I    NCi-PG(i+l)
i-PL(i+l)

N-i (27) 
i=0 
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Consequently,   the probability that the  (n+l)-th maximum run (n=l,2,   .) 
equals  to   £   is  given as 

Pn+i(-0= I    Nci{p
±^(i-P^)

N-i-pi(^-1)(i-Pi-1)N-i} 
i=0 

(28) 

The distribution function of Pn+^ is given as 

Fn+l(^) =  I N^P1 ^(1-P i)N_i 
i=0 

(29) 

(The above equations also hold for n=0 ; maximum run.) 
Applying the same approximation as in eqs.(16) and (18), the mean of 
the (n+l)-th maximum run (n=l,2,,,) is given as 

'(n+1)* -1* NCi< 
'1* 1-p-* 

(30) 

(n£l) 

in which £ y^  is given by eq.(21) or (22). The definition for £    is 
extended into real numbers again in this equation. The summation with 

.+1, £^+2,   and is taken for the values at £ V- '1* respect to 
so on. 
If measured values of -^ (a+iy::- (n=l ,2,3,...) fall within a significant 
part of the distribution (eq.28), the experimental data may be judged 
to be statistically significant. When we apply the 95%^ or the 99% ' 
confidence intervals, we may consider the data to be statistically 
significant if ^(n+l)* ^a^s  within the intervals between ^ (n+l)*~ 
£     and £  (n+l)}+ 4' ^ c ^s a nalf °f tne confidence interval for the 
given confidence coefficient and is given by solving eq.(29) 
implicitly . 
* (traditional standards are adopted, i.e. 95% and 99%.) 

I    NciP^(iV) 
i=0 

N-i -(n+l)*+ic 

•(n+l)*~ c 

= 0.95 or 0.99       (31) 

(n=0,l,2,..) 

To have an exact value for £ in the above equation, the definition 
for £    has to be extended into the real numbers. 
Figures 4 (a) and (b) show the changes in the confidence regions of 
the maximum run with respect to N when (a) the significant wave height 
and (b) the 1/10 maximum wave height are used for ht respectively. The 
dotted line is for the 95% and the chain line is for the 99% 
confidence regions respectively. Figures 5 (a) and (b) show the 
changes in the. confidence regions of the maximum run with respect to 
ht when (a) N=50 and (b) N=500 are used respectively. 

Example 3 (statistically significant run) 

When N=100 and ht=1.6, we can see from Fig.4(a) that the number of the 
maximum run in the data must fall between 3 and 6 
confidence interval or 2 and 7 for the 

if we apply the 95% 
confidence interval. 
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(a) h=1.60 
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(b) h=2.03 

Fig.4 Change in the confidence regions (maximum run) 
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Fig.5 Change in the confidence regions (maximum run) 
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Table-3 Measured runs of wave height in a numerical simulation (h>l) 

length total frequency eq.(l) 

1 22 0.44 0.467 
2 10 0.20 0.249 
3 6 0.12 0.133 
4 3 0.06 0.071 
5 4 0.08 0.038 
6 1 0.02 0.020 
7 0 0 0.011 
8 3 0.06 0.006 
9 1 0.02 0.003 

Example 4 (verification of the experiment) 

Table-3 shows the measured runs of wave height which exceed the mean 
wave height (ht=l) obtained in the numerical simulation of the 
Pierson-Moskowitz spectrum. Figure 6 shows the comparison of data and 
the theoretical probability distribution of the run (eq.l). The 
agreement between the data and eq.(l) in the region & <4 is fairly 
good. However, the verification of eq.(l) in the region £• >5 is 
difficult due to the fluctuation of data. This is mainly due to the 
insufficient amount of data. Instead of making a long measurement to 
obtain a sufficient amount of data, the following verification for the 
data is possible applying the ordered statistics explained so far. 
White circles in Fig.7 show the run of wave height in descending order 
from its 1st through 6th maximum values which are listed in Table-3. 
Two solid curves show the limit for the 95% confidence region given by 
eq.(31). Judging from the figure, the distribution has a statistical 
bias to the larger side. 

P,(*) 

0.01 

Fig.6 Probability distribution of the run of high waves (hj>l) 
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10 

95% confidence region 

4       5       6 
i  (order) 

Fig.7 Ordered maximum runs and the limit 
for the 95% confidence regions 

5. SUMMARY AND REMARKS 

The probability distribution of the maximum run of wave height for the 
irregular sea waves is introduced theoretically. The mean of the run 
and its approximations are also introduced and the changes with 
respect to the number of runs for different ht are shown in the 
figure. The probability distributions for the 2nd maximum, 3rd maximum 
and further maximum runs and their mean values are also introduced. 
The confidence regions for the above means are introduced, although 
the definition for JL is extended into real numbers and the 
traditional confidence coefficients of 95% and 99% are applied. (We 
may have to introduce confidence coefficients which are effective in 
coastal engineering problems.) 
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