
CHAPTER 41 

A NUMERICAL MODEL OF WAVE DEFORMATION IN SURF ZONE 

Akira WATANABE*  and Mohammad DIBAJNIA** 

Abstract. 

A numerical model is presented for nearshore wave 
deformation due to shoaling and breaking, and to decay and 
recovery in the surf zone. The model is based on a set of 
time-dependent mild slope equations including a term of 
wave energy dissipation caused by breaking. Its 
applicability is demonstrated by comparisons between the 
computations and the measurements of cross-shore 
distributions of the wave height and potential energy over 
typical beach configurations. 

1. INTRODUCTION 

Upon arriving at the nearshore zone, waves come to 
play an important role in various coastal processes. It 
is in this area that the waves undergo some drastic 
changes due to shoaling, diffraction, refraction and 
breaking, and that they gain the ability to affect sea 
bottom configuration, to damage man-made structures or to 
cause difficulties in the handling of ships. A 
conventional approach to describing nearshore waves is 
through using the wave energy equation. Although the 
method has been widely employed in coastal engineering, it 
is not a general one in the sense that reflection, 
refraction and diffraction of the waves should be 
separately calculated. In addition in case of boundaries 
with complicated geometry, the method faces severe 
computational difficulties. A more general and new 
approach is available through using the mild-slope 
equation first derived by Berkhoff (1972). The equation, 
expressed in an elliptic form, describes waves under 
combined diffraction and refraction on a slowly varying 
bottom.    Its    solution,   however,    often  involves 
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considerable computational trouble, and the treatment of 
boundary conditions is in general difficult. To overcome 
these difficulties, simplified parabolic forms of this 
equation have been derived, which reduce the computation 
involved, but instead we cannot easily deal with reflected 
waves in general. Watanabe and Maruyama (1986) have 
proposed a set of time-dependent mild-slope equations, 
which has the advantages of reduced computation time as 
compared with the elliptic form equation and of simpler 
treatment of boundary conditions for open boundaries as 
well as for boundaries with arbitrary reflectivity. In 
addition, their model incorporates wave breaking and decay 
in the surf zone. However its validity has not yet been 
fully examined. 

The time-dependent mild-slope equations will be 
applied in the present paper to computing cross-shore 
change in a one-dimensional wave field; namely, 
deformation of waves with normal incidence on a straight 
parallel-contour coast. The selection of such simple 
conditions will avoid the involvement of wave diffraction 
and refraction, and enable us to study in details about 
the wave deformation due to breaking. The formulation for 
energy dissipation in the previous study will be modified 
to more properly express the wave decay and recovery 
processes. Some numerical computations through the new 
equations will be conducted on cross-shore distributions 
of the wave height and potential energy over three kinds 
of typical beach configurations, and compared with the 
experimental data. 

2. Time-Dependent Mild-Slope Equations for Waves in 
the Surf Zone 

Watanabe and Maruyama (1986) have presented a set of 
the time-dependent mild-slope equations and a numerical 
model for nearshore waves under combined refraction, 
diffraction, and breaking. This model is applied here to 
a cross-shore one-dimensional wave field, and is improved 
for the behavior in the surf zone. 

The equations are expressed in terms of the water 
surface elevation £ and the flow rate Q into the cross- 
shore direction as: 

d Q d   t, 
  +  e 2 + 
d t d x 

d   C     1 d  ( n Q  ) 

d  t n d x 

f a   Q  = 0 (1) 

= 0 (2) 

where t  is time, x    is the horizontal coordinate normal to 
the shoreline,  c  is the phase velocity, and 
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1  i %kh \ 
Q  = \     u <Xt,        n =  —   1 +  (3) 

A 2  V      sinh 2kh    > 
in which u is the ^-component of the orbital velocity, h 
is the water depth, and if is the wave number. Equations 
(1) and (2) may be regarded as vertically integrated 
equations of motion and of continuity, respectively. In 
Eq. (1), f D is the energy dissipation factor, and has 
been expressed by Watanabe and Maruyama (1986) as: 

/ g        (        Q   m \ 
f  D = a D  tan/3 / —     - 1 (4) 

V    h     v Q  p      ) 

where tan/3 is a representative bottom slope around the 
breaking point, Q m is the amplitude of Q, and Q r is 
the flow rate amplitude  of the  broken waves recovered in 
an area of uniform depth of h  and expressed as Q r   =     y ' 
V gtf . Values of 2. 5 and 0. 25 have been proposed by 
them for the coefficients, a and y ', respectively. The 
dissipation factor, f D, is set equal to zero outside the 
surf zone and in any region in which Q m < Q r . 
Under this condition, f D =0, Eqs. (1) and (2) reduce 
to the  mild-slope equation  proposed by Berkhoff  (1972). 

In order to improve the behavior of the model for the 
wave decay and recovery processes, we now redetermine the 
expression for the energy dissipation factor f D. A 
proper modeling of wave transformation in. the surf zone 
depends strongly on appropriate evaluation of this factor. 
Several models for wave motion in the surf zone have 
been proposed. A brief summary of the works up to the 
present is given by Horikawa (1988). However, the wave 
breaking process and the subsequent breaking-induced 
turbulence have not yet been fully clarified and much 
remains to be done. In the present work a semi- 
empirical general expression for f D is given through 
using some new concepts and experimental results. 

If we assume  purely progressive waves, combination of 
Eqs. (1) and (2) yield the following wave energy equation. 

d 
— (Ecs)=-nfDE (5) 
dx 

where E is the wave energy density per unit horizontal 
area, and c s is the group velocity. Now assuming long 
waves over a uniformly sloping beach and a constant ratio 
of the wave height to the water depth, we obtain the 
following expression for f  D from Elq. (5). 

f D = a D  tan/3 / — (6) 
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For a general bottom topography, Eq. (6) needs some 
modification. To do this we should introduce two 
parameters. The first one is the amplitude of the 
wave-induced flow rate inside the surf zone of a uniformly 
sloping beach, which will be denoted by Q , . According 
to experimental data (Isobe, 1986), Ss can be safely 
formulated as: 

Q  »  = y ,   a h,       y s = 0. 4 ( 0. 57 + 5. 3 tanjS )  (7) 

For the second parameter, we will adopt the flow rate of 
recovered waves in a similar way to Watanabe and Maruyama 
(1986). Let us assume waves coming into an area of 
uniform depth h after breaking as shown in Fig. 1. It is 
well known that upon arriving at this area, broken waves 
start to recover and after a certain distance shown as 
the transient zone, they will find a stable form and will 
no more lose their energy. Considering the experimental 
results (Maruyama & Shimizu, 1986), the amplitude of the 
flow rate of recovered waves, Q r,   can be expressed as: 

Q =    y o h. 0.4 ( a / h  ) (8) 

where  ( a/h )   b  is  the ratio  of  the wave amplitude to 
the water depth at the breaking point. 

^y   W^ 

recovered waves 

B.P. 

W//W/J7fW//////M/W/mSl- 

transient zone fD=o 

Qm=Qr 

Figure 1  Wave recovery zone with constant depth. 

The fact that the value of f v should become equal 
to zero for recovered waves suggests that, at any water 
depth, the value of Q e may be regarded as the critical 
flow rate below which there is no dissipation of energy. 
Therefore  we assume  the following form of expression for 
f   D- 

f  D = A   ( Q m    - Q r)   " (9) 

where at any depth Q „ is the amplitude of the actual flow 
rate and Q r is the flow rate amplitude of the broken 
waves virtually recovered in the same constant depth. The 
power in should be less than unity in order to get a 
finite distance to recovery. The proportionality constant 
A     can  be determined  by  requiring  that  when Q m = Q s 
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then the value of f D should be equal to that for 
uniform slope, i.e. Eq. (4). Assuming m =1/2 for 
simplicity we finally obtain Eq. (10) for general bottom 
topography. 

/ g     f      Q m   -      Q r    \ 
f D = a D  tan|3 / —     (10) 

V     h       V  Q  r -  Q  „ J 
The location of the breaking point is calculated with 

the generalized breaker index diagram proposed by Watanabe 
et al. (1984). Change in the mean water elevation is 
evaluated through the distribution of radiation stresses, 
which are calculated from time histories of t, and Q by 
using the formulas presented by Watanabe and Maruyama 
(1986). 

3. Boundary Conditions 

For the computation of a cross-shore one-dimensional 
wave field, there are two boundaries: the offshore 
boundary and the shoreline boundary. 

The offshore boundary where incident waves are 
prescribed is treated as an open boundary in order to let 
the reflected waves, if any, to go out of the region 
freely. For this, assuming a locally constant depth 
region at the offshore, we express the boundary condition 
in terms of the water surface elevation as: 

^(.x0)   =   K<x0   +   Ax)+ai   {sin   (   k x 0   -at) 

-sin   [   k   (  x o   +   Ax)   -   a  (   t  -  z )]}   (11) 

where x = A x. /a 0 , Ax is the grid length in the finite 
difference scheme, a x and a are the amplitude and 
angular frequency of the incident waves, respectively, the 
subscript o denotes quantities at the offshore boundary 
and the .sr-axis is taken shoreward. 

At the shoreline, previous computations have usually 
assumed a hypothetical constant depth region to avoid 
infinity in the value of wave height. However, the 
solution of the time-dependent rnild-slope equations gives 
a time history of wave propagation so that the breaking 
point can be determined contemporarily with the 
computation of wave propagation and the wave height will 
decay thereafter. This makes it possible to impose the 
shoreline boundary condition simply as Q = 0. The 
receding of the shoreline due to change in the mean water 
level is also included using a moving boundary technique. 

4. Results and Discussion 

The nearshore wave model based on Eqs. (1), (2), and 
(7) to (10) is here applied to computing wave deformation 
for three kinds of  typical beach profiles: uniform slope, 
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step-type, and  bar-type.  The  equations are solved  by a 
finite difference method with a staggered mesh scheme. 

The results are compared with measurements reported by 
Nagayama (1983) in Figs. 2 to 4, where // is the wave 
height, E v is the potential energy, p is the water 
density, and the z-axis is taken here in the offshore 
direction  with  the  origin at the  shoreline  in  still 
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Figure 2  Wave height and potential energy 
on a uniform slope. 
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Figure 3  Wave height and potential energy 
on a step-type beach. 

water. The potential energy in the measurements has been 
evaluated from the mean square values of £ ( t ) at each 
location. 

The wave decay, recovery, and secondary breaking are 
well reproduced in the computations. Although the wave 
height  is  slightiy underestimated around the breaking 
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Figure 4  Wave height and potential energy 
on a bar-type beach. 

point as is anticipated whenever linear theories are used, 
the distributions of the potential energy which represents 
overall intensity of the wave motion over one wave period 
are very well estimated. The small disagreement in the 
potential energy on the step-type beach before the first 
breaking point is attributed to the generation of cross 
waves i n the wave channel. 
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Figure 5 shows the cross-shore variations of some 
other quantities calculated for the case of the bar-type 
beach. Figure 5(a) gives the variations of the energy 
dissipation factor f D and of the energy dissipation rate 
per unit mass n f  D E I p . It is  seen that after the 
first breaking the energy dissipation becomes zero as the 
water depth behind the bar increases and it is kept as 
zero until the secondary breaking occurs. In Fig. 5(b) 
the variation of the mean water level is shown. 
Unfortunately experimental data of the mean water level 
change are not available. However, considering the 
results for wave energy, we can expect that the wave 
set-up/dawn are well predicted, as we have found in 
further applications of the model. Figure 5(c) shows the 
variations of the flow rate  amplitude Q ,„ and QT. 
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Figure 5  Energy dissipation factor, dissipation rate, 
mean water level and flow rate amplitude. 
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5. Concluding Remarks 

A numerical model for nearshore waves based on the 
time-dependent mild-slope equations have been presented, 
with modification of the term for the energy dissipation 
due to breaking. It has been shown that the model can 
reproduce very well cross-shore wave deformation due to 
shoaling, breaking, decay, and  recovery. 

Generalization of the present model to two-dimensional 
wave fields will be rather straightforward and easy to 
conduct in a similar way to that described by Watanabe and 
Maruyama (1986). The two-dimensional model thus obtained 
will be applicable to computing wave deformation due not 
only to shoaling, breaking and recovery but also to 
refraction and diffraction. 
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