
CHAPTER 39 

On the maximum runup of cnoidal waves. 

Costas Emmanuel Synolakis f, A.M., ASCE and Manas Kumar Deb %. 

This is a study of the maximum runup of cnoidal waves on plane beaches. 
An approximate theory is described for determining the maximum runup of non- 
breaking cnoidal waves. It is shown that the linear and nonlinear theory predict 
mathematically identical maximum runup heights. An asymptotic result is derived 
for the maximum runup of solitary waves, which are one limiting form of cnoidal 
waves. A series of laboratory experiments is described to support the theory. Other 
numerical results are presented that suggest that the runup of cnoidal waves is sig- 
nificantly higher than the runup of monochromatic waves with the same waveheight 
and wavelength. Preliminary laboratory data are also presented which suggest that, 
for certain cnoidal waves, the maximum runup is not a monotonically varying func- 
tion of the normalized wavelength. 

1. Introduction 

The problem of determining the runup and reflection of cnoidal waves on plane 
beaches usually arises in the study of the coastal effects of tsunamis. Tsunamis are 
long water waves of small steepness generated by impulsive geophysical events on 
the ocean floor or at the coastline. Cnoidal waves are believed to model important 
aspects of the coastal effects of tsunamis well. 

The process of long wave generation and propagation is now well understood. 
The process of long wave runup and reflection is not. However, there is consensus 
that one suitable physical model for this process is the formalism of a long wave 
propagating over constant depth and encountering a sloping beach. The studies of 
long wave runup have concentrated either on solitary waves or on monochromatic 
waves, i.e., at the two extremes of cnoidal waves. (For a comprehensive review of 
studies on solitary wave runup see Synolakis (1986).) To date, there appear to have 
been only three studies on cnoidal wave runup, one unpublished study by Pedersen 
and Gjevik (1983), the study of Ohyama (1987) - in Japanese - and the study of 
Synolakis et al (1988). 
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Despite the quality of the analytical work, fundamental unresolved questions 
about the runup of long waves still persist. For example, in the study of solitary 
waves, the empirical relationship between the normalized runup and the normalized 
wave height that has been established in the classic laboratory investigations of 
Hall and Watts (1955) remained, until recently, unexplained. The results of the 
available numerical solutions have not been confirmed with detailed surface profiles 
from laboratory data, and, as a consequence, there is little conclusive information 
about the relative importance of dispersion and nonlinearity during runup. Until 
Synolakis (1987), there was no realization of the differences in the runup behaviour 
of breaking and nonbreaking long waves, and this had led to comparisons between 
numerical data for nonbreaking waves with laboratory data for breaking waves. 

There is still little understanding of the criteria that determine whether a wave 
breaks during runup or rundown, or of the reflection process. Compared to recent 
advances in understanding periodic wave runup on natural beaches, (Huntley et al 
1977, Guza and Thornton, 1982 and Holman, 1986) the state of the art in cnoidal 
runup has been very limiting. 

In the present study an exact solution to an approximate theory is described 
for determining the runup of long waves up plane beaches. The basic solution 
details and the evolution of the amplitude for solitary waves have been presented in 
Synolakis (1987). Some results for cnoidal waves have been presented in Synolakis et 
al (1988). In this paper we will summarize the predictions of the linear and nonlinear 
theory and we will show that the linear and nonlinear theory predict mathematically 

identical maximum runup heights. We will summarize the asymptotic results that 
lead to the runup law presented ibid and we will present numerical results for the 
runup of cnoidal waves. These results hint on a rich and unexpected behavior in 
the runup of long waves. 

2. Basic equations and solutions 
Consider a topography consisting of a plane sloping beach of angle /?, as shown 

in figure 1. The origin of the coordinate system is at the initial position of the 
shoreline and x increases seaward. The topography h0(x) is described as follows : 

ho(x) = itan/? when x < dcot/? and ho(x) = d when x > dcot/3. (l) 

d is the undisturbed water depth in the constant depth region. Dimensionless 
variables are introduced as follows : x = xd,H = Hd,fj = y\d, ho — hod, u = 
u^/gd, and i = ty/d/g. Consider a propagation problem described by the shallow 
water wave equations: 

ht + {hu)x = 0, (2a) 
ut + uux 4- r\x = 0, (26) 
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where h(x) = h0(x) + f](x,t). 

2.1 Linear theory 
The system of equations (2) can be linearized by retaining the first order terms 

only, resulting into rjtt — (r)xho)x = 0. When h0(x) = itan/3, a well known solution 
of this equation is ri(x,t) = B(k,0) J0(2k\/xcot/?)e_*fcct, where B is the amplifi- 
cation factor, k is the wavenumber and c = 1. Keller and Keller (1964) presented 
another steady state solution for the combined topography defined by (1). For an 
incident wave of the form ri{x,t) = Aie~^x+ct\ they determined the amplification 
factor B(k,P,Ai) = 2e-

,'fccot/*J4;/[./o(2fccot/?) - iJ^kcotji)]. 
Since the governing equation is linear and homogenous, any standing wave 

solutions can be used to obtain travelling wave solutions by linear superposition. 
For example, when the incident wave is of the form rj(Xo,i) = f•oo$(k)e~%katdk, 

then the wave transmitted to the beach is given by : 

, J0(2lcViIo)e-''i(Xl+c') 
J0{2kX0) -iJi(2JfcX0) 

where XQ — cot j3. This solution is only valid when x > 0. To obtain the details of 
the solution when x < 0 one must solve the nonlinear set (2). 

n(^) = 2j_j{k)^    ! dk, (3) 

2.2 Nonlinear theory 
To solve the nonlinear set (2) for the sloping beach case, ho(x)  = xtan/?, 

Carrier and Greenspan (1958) introduced the following hodograph transformation, 

—««£-$+T>-'""£-i> 
u = —, and  7/ = — - —. (4) 

This change of variables reduces the set of equations (2) to a single linear equation, 

Wv)CT = <7</'AA- (5) 

The transformation is such that in the hodograph plane, i.e., the (a, A) space, the 
shoreline is always at a = 0 ; this can be deduced easily by setting a = 0 in (4); 
then x = — r\ cot j3, which is an equality only valid at the shoreline tip. 

Equation (5) can be solved with standard methods. Defining the Fourier trans- 

form of il>{p,\) as *(tr,fc) = fZo^ic, \)e-ix~kd\,and, if 9{<70,k) = F(k), then the 
bounded solution at a = 0 and a = oo takes the form : 

1>(o, A) = — r F(k)^i^-fkxdk. (6a) 
2^J-<x>        Jo(k(?o) 

If an initial condition is available instead, one may use Hankel transform methods 
(Carrier (1966)). 
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The process of specifying explicitly an initial or a boundary condition to equa- 

tion (5) is nontrivial. Even if initial or a boundary data are available in the (x, t) 

space, the process of deriving the equivalent conditions in the [a, A) space is very 

complex. These difficulties have restricted the use of the Carrier and Greenspan 

formalism and this is rather unfortunate, because some of the problems described 

can be circumvented. (Carrier, 1966.) Another method has been described by Syn- 

olakis (1986, 1987) to specify a boundary condition including reflection. We will 

summarize it here. 

2.3 Approximate solution of the nonlinear theory 

Carrier (1966) pointed out that far from the shoreline nonlinear effects are 

small. The transformation equations can then be simplified by neglecting terms 

~ 0(u2). To the same order, il>\ <S j$ and „ "C ^- Using these approximations 

the transformation equations (4) reduce to u = ^, rj = &£•, x = yg cot/? and t = 

— ^ cot /?. These equations are uncoupled and allow direct transition from the [a, A) 

space to the (x,t) space. 

One method for specifying a boundary condition in the physical space is to 

use the solution of the equivalent linear problem, as given by equation (3), at the 

seaward boundary, where z = Xo = cot/3, i.e., the point a = ao = 4 in the 

(CT,A) space. Then equations (4) imply that r)(X0,t) = J*/>A(4,A). The boundary 

condition F(k) in the (a, A) space is determined from (3) by repeated application 

of the Fourier integral theorem. Assuming that rl>[ao, A) —> 0 as A —» ±oo, then the 

solution of equation (5) follows, 

„    .. 16i f~ *(is) J0(
2^)e--X»(1-^) 

*(M) = -X-0J_00—Jo(2KX0)-iM2KX0)
dK • <"> 

3. Comparison of the linear and of the nonlinear theory 

The maximum runup according to the linear theory is the maximum value 

attained by the wave amplitude at the initial position of the shoreline ,i.e., at x = 0, 

or 
$(jfc)e_ifc(xo+<rf) 

n(o,t) = 2 
J —< ,J0(2kXo)-iJi[2kXo. 

•dk. (7) 

In the nonlinear theory the maximum runup is given by the maximum value of the 

amplitude at the shoreline n(xe,X).(xs is the x—coordinate of the shoreline and it 

corresponds to a = 0.) Using (4), one obtains that : 
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«a = dxg/dt is the velocity of the shoreline tip. At the point of maximum runup 
ua becomes zero. Setting us = 0 and a = 0 in the transformation equations (4) 
reduces the transformation equations to « = 0, »7 = 4 , x = —rj cot j3, and t = 
— ^cot/3. Substitution of these values in equation (8) reduces it to equation (7), 

proving that the maximum runup predicted by the linear theory is identical to the 
maximum runup predicted by the nonlinear theory. At the minimum rundown point 

the shoreline tip attains zero velocity also, and the same argument applies again. 
This result was first noted by Carrier (1971) in a problem where reflection was 

negligible. As shown by Synolakis (1987) it is valid in general, even when reflection 
is important. It is largely unexpected, because the linear and nonlinear theory differ 
most at the initial position of the shoreline. 

4. The cnoidal wave solutions 
Cnoidal waves are exact periodic solutions of the KdV equation r)t + (l+^r))rix + 

g^xxx = 0. A cnoidal wave propagating over constant depth is given by Svendsen 
(1974) as 

V(x,t) = yt-l + Hcn2(2K(^ + ^)\m). (9) 

j/t is the distance of the trough from the bottom, and H, L and T are the di- 
mensionless wave height, wavelength and period respectively. K(m) is the first 
elliptic integral and m is the elliptic parameter. If one defines the Ursell number 
as U = HL2, then U = (l6/3)mK2. The function cn(z|m) is the Jacobian elliptic 
function and it is given by Abramowitz and Stegun (1972) as: 

cn(z| w) = vJSr £ TT?^T 
cos[(2n +1] w 1 

q = e~nK lK, and K and K' are the real and imaginary quarter periods of the 
elliptic functions respectively. Cnoidal waves have two important limiting cases. As 
m —> 1, it can be shown that 

r]{x,t) = Hsech2J-H(x + ct). (10) 

c = Vl + H is the wave celerity. Equation (10) is the Boussinesq profile for a 
solitary wave. As m —> 0, then 

,     .      H       „   ,x      t . 
V{x,t) = — COS2TT(- + -), 

the profile of a monochromatic periodic wave. For comparison, figure 1 shows 
a cnoidal wave, a solitary wave and a sinusoidal wave with the same normalized 
height H propagating over constant depth. The cnoidal and sinusoidal waves also 
have the same wavelength L. 
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Figure 1 The amplitude profile of a solitary wave (ri = Hsecb. 9), a sinusoidal 
wave (7? = 4f- cos 0) and a cnoidal wave (r) = yt — 1 + Hcn2{2KB\m)) with the same 
H = 0.027 propagating over constant depth as a function of the dimensionless phase 
9. The cnoidal wave and the sinusoidal wave also have the same wavelength L. 

The results of the previous section will now be applied to derive a result for 
the maximum runup of cnoidal waves climbing up a sloping beach. 

4.1 The solitary wave solution 
A solitary wave centered at x = X± at t = 0 has the following surface profile 

TJ(X, 0) = ^jsech2i(z—Xi), whereby = y/3H/4d. The function $ (A;) associated with 
this profile is derived in the appendix. It is given by $(fc) = (2/3)fccosech(afc)ejfcXl 

where a = 7r/2"7. Substituting $(fc) into equation (7) and defining as R(t) the 
dimensless surface elevation at the initial position of the shoreline, then 

4   f°o £tfc(Xi-X0-ct) 
R(t) = -        fccosech(afc) ,      .      ,  ,        rife. (11) 

3J-oo J0 (2fcXo)-iJ1(2fcX0) 

This integral can be calculated with standard methods of applied mathematics; its 
convergence and evaluation is discussed in Synolakis (1987,1988). The integration 

result is   : 

(12) 

The series can be simplified further by using the asymptotic form for large arguments 
of the modified Bessel functions. When 4X07 » 1, then : 

R(t) = 8V^:5o£r(3F)^(-l)*1+1nte-2-r(x1+x„-o*)n (13) 
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This form of the solution is particularly helpful for calculating the maximum runup. 

The series in (12) is of the form £^°=1(-l)'
l+1rc3/2x"' ! lis maximum value oc- 

curs at x = 0.481. This value defines the time tmax = (l/c)[Xi — Xo — 0.366/^] 
when the wave reaches its maximum runup, and the value of the series at tmax is 
Smax = 0.15173. Defining as R the maximum value of R(t) and evaluating the term 
8%/n\/3smax, then the following expression results for the maximum runup : 

R = 2.831 ycot 0{H)1. (14) 

The term the runup law has been coined for this equation. It is formally valid when 

the series converges and when 4Xo7 ^ 1> i-e-i VH » 0.288 tan/3. 

4.2 Validity of the solution 
The solution described is valid for functions $(fc) such that the Jacobian of 

the transformation (4) is never equal to zero. The Jacobian becomes zero when the 
surface slope dij/dx becomes infinite. In the physical plane this point is usually 
interpreted as the point of wave breaking. 

The Jacobian of the Carrier and Greenspan transformation is J = c(ta
2 —1\2). 

Taking the limit as a —• 0, then J —> (u\ — |)2. Using the formalism used in 
calculating the runup integral (Eq. 11), one can show analytically that the limiting 
H when u\ — ^ goes through zero, as : 

H = 0.8183(cot ff) ~ t. (15a) 

This is a weaker restriction than that presented in Pedersen and Gjevik (1983), who 
reported that waves break when 

-ff>0.479(cot/?)-^. (156) 

However, there are two basic differences between the two results. The Gjevik and 
Pedersen criterion (15) indicates the limiting H when a solitary wave breaks during 
the backwash. Equation (15b) indicates when a wave first breaks during runup. 
Also, the Gjevik and Pedersen result (15b) was derived by using the sinusoidal 
wave profile that best fits the Boussinesq profile, while equation (15a) is based on 
the actual Boussinesq profile (Eq. 10). 

4.3 Maximum runup 
Although it has long been known that breaking and nonreaking periodic waves 

follow different runup variations, this behaviour has never been recognized in single- 
wave runup. In Synolakis (1987), data was presented that demonstrated conclu- 
sively that two different runup regimes exist, one for breaking and one for non- 
breaking solitary waves. 
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Figure 2a.A definition sketch for solitary wave runup. 
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Figure 2b.The normalized runup R of solitary waves of height H climbing up 
different beaches of slope 1 : cot /? plotted against the runup law (Eq. 13). All data 
refer to nonbreaking waves and they were derived in the laboratory. The data for 
the slopes 1 : 11.47,1 : 5.67,1 : 3.73,1 : 2.14, and 1 : 1.00 are from Hall and Watts 
(1953), the data for the 1 : 2.75 slope are from Pedersen and Gjevik (1983), and 
the data for the 1 : 19.85 slope are from Synolakis (1987). 
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To verify this observation for other beaches, the runup law has been compared 
ibid with laboratory data. Comparisons of analytical results with laboratory data 
such as those of Hall and Watts (1953) are not as straightforward as often assumed. 
That study includes both breaking and nonbreaking wave data without identifying 
them as such, and therefore the empirical relationships derived there may not be 
directly applicable when determining the runup of nonbreaking waves. To perform 
a posteriori identification of the Hall and Watts data, the breaking criterion (Eq 
15) was used, and the identified nonbreaking wave data are presented in figure 2b. 
The abscissa is the runup law (Eq. 14), and the ordinate is the maximum runup. 
The asymptotic result does appear to model the laboratory data very well. No data 
are presented for slopes smaller than 1:20, because no such data are yet available; 
on a 1:100 slope, the highest nonbreaking wave is a wave with H » 0.003. 

4.4 The cnoidal wave solution 

Consider an incoming cnoidal wave of the form (9). In this case the method of 
choice for the solution is a Fourier-Bessel series. The solution proceeds in a manner 
similar to the development in section 4.2. 

The complete expression for a cnoidal wave is given by 

ri(x,t) = yt -1 

,x       t , 

i=0j 

2ir2H ^ ^ gtn+n+1 x        t 

+ MK* LL (1 + g2re+1)(1 + g2m+1) 
c°s2,(m ~ ")(Z - y)-  («0 

Using the Keller and Keller (1964), and, after some algebra, we obtain the wave 
transmitted to the beach and eventually the wave amplitude at the initial shoreline : 

V{0,t) = yt-l (17) 

47T2ff yy y\ qi+> + 1 CQS{<f> - %(cot 0 + Cpt)] 
+ mK2 hoh>{l + 12i+1)ll + 92J+1) y/JS(2fciycot0) + Jf(2%cot0) 

47T2ff y\ y\ g^1 COsfr' - fy(cot 0 + Cpt)} 

ki,- = 2*{i + j + 1)/L, k'iS = 2n(i - j)/L, * = arctan[^^ffl and <j>> = 
•7i (2fc'   cot i3l 

arctan[ j rik',' cot.}].   Since cot/? > 1, the arguments of the Bessel functions are 
either zero or much larger than one, and the Bessel functions can be replaced by 
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their asymptotic forms for large arguments. Simplifying (17) we obtain, 
»7(0,t)«yt-l 

A^H   /2^77^^    V(i + j+l)qi+*+l r27r..      ...    +/, 
-iW-TCot/? >   >   j—-TTT77--57TTT COB[—(t + 3 + l)(cot/? • 

J^^-Cot^^{i + q2i+l){i + q2.+1)coS[T(l-j){cot^-c0t)-~] 

T, 
+ rfVIcot^^0(i + n(i+^1)cos[i(,'+i+1)(cot/?"C0t)"4 

2?r2ff ^       g2^1 

+ mif2 ^(l + 9
2i+1)2" (18) 

i=0  \ * ' 

Asm->0, it is possible to simplify this expression. However, since it is necessary 

to determine the behavior Vm, we proceed with a direct evaluation of the series in 

Eq (18). 

Figure 3 shows the maximum relative runup of cnoidal waves R/H with the 

same H as a function of the dimensionless wavelength L up three different sloping 

beaches. The figure suggests that the runup of a cnoidal wave is substantially higher 

than the runup of the monochromatic wave with the same, height and wavelength. 

It is also seen that there exists a minimum in the functional variation of the cnoidal 

wave runup with the wavelength. This minimum is more pronounced in the runup 

variation of the larger waves, in Figures 3(b) and 3(c). 

All the waves in figure 3 are nonbreaking. The linear theory cannot provide 

directly a breaking criterion. To determine when waves start to break, the Jaco- 

bian of the Carrier and Greenspan transformation was monitored continuously as 

described in Synolakis (1986). The implication is that these results are valid for 

waves climbing up very steep beaches or for very long waves. Most natural beaches 

are gently sloping, and it is not obvious if similar differences exist. However, Figure 

3 does suggest that the common practice of choosing the dominant frequency of 

an incoming wave-spectrum and using the runup of the monochromatic wave with 

that dominant frequency for calculating wave runup may not be entirely appropriate 

when the incoming wave energy is dominated by low frequency swell. 

To investigate if this behavior can be demonstrated in the laboratory, a series 

of preliminary experiments were conducted in the 40m wave tank of the Keck Labo- 

ratory of Hydraulics and Water Resources of the California Institute of Technology. 

At a distance of 20m from the wave generator a sloping beach of 45° angle was 

installed. The wave generation system and the generation algorithm is described in 

detail by Skjelbreia (1987). 

The results of the laboratory experiments for the climb of cnoidal waves of 

H = 0.1 up a 45° beach are shown in Figure 3. The relative runup is shown to 

decrease and then increase again as the wavelength increases. This is as the theory 

suggests. 
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Figure 3 The maximum relative runup of sinusoidal waves (dashed lines) and 
the maximum relative runup of cnoidal waves (solid lines) with the same height 
H up three sloping beaches as a function of the dimensionless wavelength, (a) 
H = 0.027,/? = 5.7°; (b) H = 0.05,/? = 11.3°; (c) H = 0.1,/? = 45°. Nonbreaking 
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Figure 4. The maximum relative runup of nonbreaking cnoidal waves with H — 0.1 

up a 45° beach as a function of the normalized wavelength. Laboratory data after 
Synolakis et al (1988). 

This behavior is not entirely unexpected. The current paradigm in wave runup 
predicts that the relative runup decreases as the wave-steepness decreases, i.e., as 
the wavelength increases Ahrens and Titus (1985). On the other hand, there is 
empirical evidence (ibid) that as the nonlinearity of a given wave increases, the 
relative runup increases as the wavelength increases. (This is an intuitively pleas- 
ing behavior for cnoidal waves; as the nonlinearity increases and the wave has an 
increasing portion of its volume above the mean water level, the relative runup is 
expected to increase.) Figure 3(c) and Figure 4 suggest that both descriptions are 
correct, over different ranges of the wavelength. 

We suggest two explanations why this behavior has been previously unrecog- 
nised. One, most existing runup data have been obtained from laboratory studies 
with monochromatic waves, where the effects of nonlinearity are difficult to quantify. 
Two, since most empirical runup relationships are based on synthesis of laboratory 
data from many different runup investigations, it is likely that any anomalies in 
the functional variations were attributed to differences in the quality of the data. 
5. Conclusions 

In summary, our analysis suggests the following conclusions. 

1) The runup of nonbreaking waves predicted by nonlinear theory is mathe- 
matically identical to the runup predicted by linear theory for waves climbing up 
plane beaches. 
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2. The runup of solitary waves is described well by the runup law, 

R = 2.831 y/cot 13(H)'. 

3. Different criteria apply for wave breaking during runup and rundown. 

4. The runup of cnoidal waves is significantly higher than the runup of the 

equivalent monochromatic waves. 

5. The runup variation of cnoidal waves is not a monotonically increasing or 

decreasing function of the wave steepness. 
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