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Wide-Angle Water Wave Models Using Fourier Method 
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Kyung Duck Suh,2 Associate Member, ASCE 

Abstract: Two Fourier models for the propagation of surface waves are reported, which are 
theoretically valid for angles of propagation up to ±90° with respect to normal incidence. 
This is a great improvement in comparison with the present parabolic models. The first 
model is based on the assumption of straight and parallel depth contours, and the second 
one is the extension to the case of irregular bathymetry. 

1 Introduction 

The parabolic equation method has proven to be a convenient and rapid method for mod- 
elling the propagation of surface waves over water of varying depths, including such im- 
portant phenomena as refraction and diffraction, e.g. Radder (1979), Booij (1981), Kirby 
& Dalrymple (1983), Liu & Tsay. (1984). The small-angle approximation of this method, 
however, leads to errors if the wave direction deviates largely from the assumed propagation 
direction like the waves diffracted behind a breakwater, for example. 

Very recently Dalrymple & Kirby (1988) developed a wave propagation model valid 
for angles of propagation up to 90° with respect to the assumed propagation direction 
(positive x direction in this paper), based on the assumption that the depth contours are 
straight and parallel in the y direction., This model was extended to the case of irregular 
bathymetry by Dalrymple et al (1988). In Dalrymple & Kirby, the incident wave train at 
x = 0 is decomposed into directional modes, or an angular spectrum, by taking the Fourier 
transform of the wave train in the y direction, and each directional mode propagates in the 
x direction only undergoing refraction and shoaling. In Dalrymple et al, however, bottom 
irregularities are shown to interact with nonzero directional modes and to force the evolution 
of other directional modes, even if they are initially of zero magnitude. In this paper, these 
two models are briefly summarized and various examples are presented. 

2 Linear Fourier model - Straight and parallel contours 

The mild-slope equation developed by Birkhoff (1972) can be written, on a beach with 
straight and parallel (in the y direction) depth contours, as 

(CCgSX)X   +   CCgiyy   +   tfCCgS    =    0 (1) 
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where C and Cg are the phase and group velocities, respectively, k is the wavenumber, and 
$(x,y) is the free surface elevation obtained by dropping the harmonic time dependence. 
The Fourier transform of the above equation in the y direction leads to the decomposition 
of the potential into directional modes 

(CCti), + {k2 - \2)CCg$ = 0 (2) 

where the caret denotes a variable in the Fourier space and X is the continuous Fourier 
parameter. 

Splitting the potential into the forward propagating and backscattered potentials and 
neglecting the assumed small backscattered wave (see Dalrymple & Kirby (1988) for details), 
the propagation model for the forward propagating wave (denoted by the superscript +) is 
obtained as 

[CCgs/k*-)?]x $+=iV^3A»4+_ l^«v*   -^j,|+ () 

This equation can be solved analytically to give the solution 

$+(x,\) = $+(0,A) 
CCjk2 - A2 

1/2 
jjs/k*^>?dx 

(4) 

where the subscript o indicates initial conditions at x — 0. The bracketed term contains 
the shoaling and refraction coefficients associated with gradual water depth changes (e.g. 
Dean & Dalrymple (1984)). 

Under the assumption that the model domain is laterally periodic, the problem can be 
approximated in the discrete Fourier space. The domain is discretized in the y direction by 
N equidistant points, with spacing Ay = l/(N — l) where I is the width of the domain. The 
velocity potential $+ (x,y), numerically defined only on these points, can be transformed 
into discrete Fourier modes by 

1   rf~1 • AT N 
*+(*,n) = ¥J2$+(x,jAy)e-^y,    n = 0, ±1, • • •, ±(y - 1), --. (5) 

The inversion formula is 

$+(x,jAy) = Yl*+(x>n)einXiAy>    J = 0,1,"-,(JV-1) (6) 

where 

2JT 
X=NAy- (?) 
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Figure 1: Diagram of the Fourier decomposition of the wave field on a row with an angular 
spectrum (with lateral wavenumbers, nX, n = 0, ±1, ±2, • • •). 

which is different from the continuous Fourier parameter A used before. Subsequently, A is 
defined by (7) if it is used in the discrete Fourier space. These transforms can be performed 
efficiently by using a fast Fourier transform (FFT for short) with N = 2P where p is a 
positive integer. Now the equation (4) can be expressed, in the discrete Fourier space, as 

4+(z,n) = $+(0,n) 
(CC,W*| - {n\f 

CCgsJk* - (n\f 

1/2 
eif^k*-(n\?dx (8) 

N N 
n = 0,±l,±2,...,±(--l),-y. 

Here $+(«,«) denotes the directional modes of the wave field on a row, each has the direction 
depicted in Fig. 1. As nX exceeds k in magnitude, *jk2 - (n\)2, the wavenumber in the 
x direction, becomes imaginary, indicating evanescent modes which decay exponentially in 
the propagation direction. Usually the evanescent modes have negligible amplitude with 
sufficiently large N, so only the progressive modes are carried in the computation. 

2.1 Periodic gaps in breakwaters 

For periodic gaps of width la in breakwaters, the initial condition is given by the Kirchhoif 
condition on *J along the breakwater, i.e. 

*J(o,y): o, 
\y\ <a 
\y\ >a 

(9) 

where A„ is the projection of the wavenumber in the y direction at x = 0, that is, A0 = 
feosintfo, where $0 is the incident wave angle, and the origin of the coordinates is located at 
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Figure 2: Instantaneous wave field behind periodic breakwater gaps on a sloping beach. 
The line denotes a wave ray, emanating from the center of one of the gaps. Depicted area 
is 405.75 x 692.48 m. (reprinted with permission of Cambridge University Press) 

the center of one of the gaps. $J(0, n) is obtained by an FFT of (9), and then <l+(0,n) is 
computed by 

#+(0,n) = i^jkl -(nA)24+(0,n) (10) 

which is the reduced form of (3) on constant depth. Finally $+(0,y) is obtained by an 
inverse FFT of 4>+(0,n). 

The breakwater gap shown in Fig. 2 is backed by a plane sloping beach with a slope 
hx = 0.0308fcofeo where h0 = 10 m is the water depth at the location of breakwater. The 
gap has a width of 100 m. The incident wave field has a 9sec wave period and a 45° angle 
of incidence. N = 128 and Ax = Ay = 5m. In Fig. 2, the instantaneous wave field on 
the sloping beach is shown. The influence of wave refraction is clear with the maximum of 
the diffraction pattern turning towards the shoreline normal. The influence of the periodic 
boundary conditions is also apparent as the waves from the upwave gap have intruded into 
the figure, yielding a short-crested sea state near the middle of the figure. The wave ray 
shown in the figure was determined independently using the method outlined in Mei (1983). 
The diffracting wave train follows the wave ray very well. 

2.2 Intersecting waves past a breakwater 

The specification of the incident wave field can be quite general. As a simple example, two 
synchronous wave trains of 9 sec period are assumed to be incident on a breakwater (386 m 
in length, lying on the y axis) at ±30° to each side of the x axis, creating a short-crested 
sea state in the absence of the breakwater, as shown in Fig. 3. Behind the breakwater, 
centered in the middle of the y axis, the two shadow zones cast by the two wave trains 
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Figure 3: Instantaneous wave field behind an offshore breakwater created by two intersecting 
wave trains. The breakwater length is 386 m and the displayed area is 1016 m wide, 
(reprinted with permission of Cambridge University Press) 

result in a long-crested sea state in these zones, as only one of the wave trains is blocked 
by the breakwater. 

Extension to a truly directional sea state composed of many frequencies is straight- 
forward. It is a matter of superposing the requisite number of wave trains with different 
frequencies and appropriate random phases, since for each frequency the evolution of the 
directional spectrum is computed in the present model. 

3 Nonlinear Fourier model on irregular bathymetry 

The governing equation is again taken to be the mild-slope equation 

V • {CCgV$) + k2CCg$ = 0. (11) 

The wavenumber k is related to the wave angular frequency u) and the local water depth h 
by the linear dispersion relationship 

ui   = gk tanhfc/j (12) 

where g is gravity. This relation is modified later to incorporate nonlinearity in the model. 

Using the definitions of p(x,y) = CCg and <j> = ^/p$ as in Radder (1979), the mild-slope 
equation becomes an Helmholtz equation 

vV + *2 (13) 
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where 

k2
c=k2~^. (14) 

For the convenience of later splitting of the solution, we define a laterally averaged 
wavenumber, k, as 

fe2 = i f\2dy (15) 
Jo 

so that 

hi = k\l - v2) (16) 

where 

»2 = 1 - % (17) 
k 

whose magnitude is usually much smaller than unity if the topography does not deviate 
—2 

drastically from straight and parallel contours. Note that & is a function of x only and the 
variability of depth in the y direction is contained in v2[x,y). Substituting (16) into (13) 
gives 

V2<j> + k2</>-k2v24> = 0. (18) 

The Fourier transform of (18) in the y direction leads to the equations for directional 
modes 

4>xx + (k2 - \2)4> - k2F(v2<t>) = 0. (19) 

Note that the Fourier transform of (v2<t>) involves <j> in the real space. Again splitting the 
potential and neglecting the backscattered wave, the propagation model for the forward 
propagating wave is obtained as 

= \\jk2^\2< 
fc2-A2 

a+ _ X'FIW 
2\Jk2 - A2 1\jk2 - \2 

The second term on the right side represents the shoaling/refraction of each wave mode 
on the laterally averaged depths.   The F(u2<j>+) term represents the interaction between 
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surface wave and the lateral bottom variation, which will be examined in detail later in 
this section. For straight and parallel bottom contours, this term vanishes and the above 
equation reduces to (3). 

In the discrete Fourier space, (20) can be approximated as 

[V^2 - (n\) 
fa = i\/fc2 - (nA)» 4>+ - 

ik2Fn(v
24>+) 

1\Jk2 - (n\y 2^4 2 - (n\y 
(21) 

N N 
n = 0,±l,±2,.-.,±(--l),-y 

associated with the discrete Fourier transforms (5) and (6). Fn denotes the nth Fourier 
component. The above equation represents N first-order ordinary differential equations in 
x, which are solved by a fourth-order Runge-Kutta method. The details of finite differencing 
and stability analysis of the numerical method are referred to Dalrymple et al (1988). 
The numerical procedure involves calculating the Fourier modes by marching along the x 
direction. However, Fn{v2<j>+) in the last term in (21) should be calculated in the real 
domain, so, at each step, recourse to the real domain by the inverse FFT is needed. 

The Fourier model (21) is linear since it is based on the linear mild-slope equation (11). 
In order to incorporate nonlinearity in the model, an empirical nonlinear dispersion relation 
proposed by Kirby & Dalrymple (1986) is used, which approximates the wavenumber for a 
solitary wave in shallow water and, in deep water, provides the wavenumber corresponding 
to the Stokes third-order theory, given by 

w2 = gk[l + h(kafD\ tanh[fc/j + h{ka)} (22) 

where a is the local wave amplitude and 

fx{kh)   =    tanh5fcfc, (23) 

AW = tn^y4' w 
cosh4fc/i + 8 - 2 tanh2 kh 

8 sinh4 kh 

The calculation of the wavenumber k using (22) needs iteration because of the dependence 
of the wavenumber on wave height. Thus, first we perform the computation with the 
wavenumber given by the linear dispersion relation (12). Using the calculated wave height, 
then, the wavenumber is corrected by the nonlinear dispersion relation (22). This procedure 
is repeated until convergence is achieved. 

3.1 Interaction between surface wave modes and the bottom variation 

The term Fn(i>2<p+) in (21) represents the interaction between the directional wave modes 
and the lateral bottom variation, which can force the evolution of the various directional 



WATER WAVE MODELS 253 

modes, even if they are initially of zero magnitude.  In order to examine this mechanism, 
we express Fn(v

2<j>+), in terms of periodic convolution, as 

1 N~1 

i^V) = T7 E "2{^rn\)^(x,{n- m)\) (26) 

where v2(x,m\), m = 0 to N — 1, is the discrete Fourier series obtained by the Fourier 
transform of u2(x,y) in the y direction. This equation states that the mth bottom mode 
u2(x,m\) triggers the (re - m)th wave mode to evolve the nth wave mode. 

T a a seC(     £   = i2. 

L    = 320 m 

'%, 
W^~f 

Figure 4: Bottom geometry and the initial condition of the wave field for the example of 
wave propagation over a bathymetry consisting of laterally periodic ridges and troughs. 

In order to illustrate this more explicitly, we have applied the model to a monochromatic 
wave train travelling over a bed whose depth is constant in the x direction but varies 
sinusoidally in the y direction, creating transverse bottom ridges. These ridges begin at 
x = 0. In this particular example, the second term on the right side in (21) vanishes. The 
mean water depth is 10 m and the wavelength and amplitude of the bed are 640 m and 
2 m, respectively, as shown in Fig. 4. At x = 0, a plane wave of 8 sec period and 1 m 
amplitude enters the domain at an incident angle of 12.8°. We have taken Ax = 5 m and 
At/ = 10 m to make a grid of 500 x 128 rows over 2,500 X 1,280 m model area, so that 
the wave mode at x = 0, ^+(0,nA), is nonzero for n = 4 and zero for all other modes, 
while the bottom mode i>2(x, mX) are appreciable for m = 2,4,6, (JV - 6),(iV - A),(N - 2) 
and are negligibly small for all other modes as shown in Fig. 5. At the first step, these 
bottom modes interact with <j>+(0, 4A) to generate the wave modes of n = 6,8,10, —2,0,2, 
respectively, which were initially of zero magnitude. Note that in an FFT, the following 
changes are made: v2(x,(N - m)\) = u2(x,-m\). The mechanism for the subsequent 
generation of new directional modes is very complicated. Note that only the even-number 
modes are generated in this particular example. 

Figs. 6 (a)-(d) show the amplitude spectra of the progressive modes at different sections. 
The wave field at x = 0 (Fig. 6 (a)) is described by single wave mode, c^>+(0,4A), which is 
propagating at 12.8° to the x axis. The generation of new modes near the initial condition 
is shown in Figs. 6 (b)-(c), and the broad spectrum at x = 2,500 m is shown in Fig. 6 (d). 
Again observe that the odd-number modes are never generated. 
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Figure 5: Amplitude spectrum of the bottom modes u2(x, m\) for the periodic bathymetry 
shown in Fig. 4. Note that u2(x,mX) is different from the depth mode h(x,m\) which 
gives nonzero values for m = 2 and N - 2 and zero for all other values of m. 

|a|   1 - 0 • 

-20     -IS     -10      -5 -JO     -15     -10      -5        0 5 10        15        20 

• 

(c)   • - 200 • 

1    1 1    | 1 1.,     , 

Figure 6: Evolution of the amplitude spectra of the progressive modes at different sections. 

Another interesting result in this example is the wave trapping over the ridge as shown 
in Fig. 7, which is the contour map of the instantaneous free surface elevation at intervals 
of 0.5 m. The waves passing over the central ridge are focused near x — 700 m,y = 720 m 
and turn back to the left. Mei (1983) has discussed this problem based on ray theory. Some 
of the rays determined by the Mei's method are drawn in Fig. 7. The rays 1, 2 and 8, 
counting from the left, travel over the wavy bed without being trapped.  The rays 3 to 7, 
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however, axe trapped. For these rays computation was stopped at the turning points, where 
the ray model blows up, but the extrapolation of these rays can explain the wave trapping 
phenomenon over the ridge in this example. 

Figure 7: Instantaneous wave field over periodic ridges and troughs. The lines denote wave 
rays emanating from x = 0 at 12.8° angle of incidence at intervals of 80 m. 

3.2   Wave focusing behind a circular shoal 

For the purpose of testing the model for the prediction of wave deformation on an irregular 
bathymetry, we have chosen the experiment reported by Ito & Tanimoto (1972). 

The experimental bathymetry consists of a circular shoal resting on a flat bottom h\ = 
0.15 m as shown in Fig. 8. The water depths in the shoal region are described by 

: h2 + 0.15625[(ai - 1.2)2 + (y - 1.2)2 (27) 
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where hi = 0.05 m is the depth at the shoal crest. A monochromatic wave train with the 
wave height 1.04 cm and the wave period 0.511 sec enters the domain at 0o = 0°. 

Sec  3     Sec  2 

/ ̂  

H 1 
U 
1 ) 

2.4 

2.0 

1.6 

i.23 
>• 

0.8 

0.4 

2.4 1.6 0.8 0.0 
X   (m) 

0.0 

Figure 8:  Geometry of the computational domain for the experiment by Ito & Tanimoto 
(1972). 

(b)   Section 2 

-J^_^. 
n v>—- 

0.8 1.2 

Y(m) 

Y(m) 

Figure 9: Comparison of the model results against the experimental data by Ito & Tan- 
imoto (1972) in terms of normalized wave height with respect to incident wave height. 
• = Experiment, - - - = Linear model, =• Nonlinear model. 
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For the three different sections indicated in Fig. 8, data from the experiment of Ito & 
Tanimoto are available. Comparison with the model results along these sections are shown in 
Figs. 9 (a)-(c) in terms of normalized wave height with respect to the incident wave height. 
In each figure, linear and nonlinear model results are indicated by dashed and solid lines, 
respectively, while black dots indicate measured data points. Nonlinear effects reduce the 
wave heights along the centerline of wave focusing and broaden the region of focused wave 
so that the diffraction fringes are displaced away from the centerline. Along the centerline 
(Fig. 9 (a)), data fall between the predictions of the two models, with the nonlinear model 
slightly underpredieting the data. On section 2 where the cusped caustic is fully developed, 
again it is difficult to judge which model predicts the data better. However, on section 3 
where the wave has passed through the caustic cusp, the nonlinear model predictions and 
the data points are in much better agreement than the linear model. 

Through the above example we have verified that our model is a reasonably good predic- 
tor of the wave field development on an irregular bathymetry where the effects of refraction, 
diffraction and nonlinearity are equally significant. However, that example is not sufficient 
for showing the ability of the model for a large angle of incidence. The next example we 
have chosen for this purpose is for the same wave and bottom geometry as those in the 
above example but different angle of incidence. Due to the axisymmetry of the circular 
shoal, the wave focusing pattern behind the shoal should be independent of the angle of 
incidence, if the model predicts it 'correctly'. 

The contours of wave height normalized with respect to the incident wave height are 
shown in Figs. 10 (a) and (b) for 6„ = 0° and 0o = 45°, respectively. The right half of 
the domain in the case of 60 = 45° is the extension of the flat bottom. The results of a 
linear parabolic model are also shown in Fig. 10 (a) as dotted lines for 60 = 0° and in Fig. 
10 (c) for 90 — 45°. The difference between the present model and the parabolic one is 
not significant for 9„ = 0° even th6ugh the entire wave focusing pattern in the parabolic 
model is shifted slightly backward compared with that in the present model. For 60 = 45°, 
however, the parabolic model gives large distortion of the wave focusing pattern. Especially 
the center line of wave focusing rotates by about 12.5° towards the positive x direction. 
For the present model, some images of the shoal appear periodically in the y direction and 
the upper left corner is contaminated by the effects of the upwave shoal. Over the shoal, 
the asymmetric distortion to the focusing pattern at 0o = 45° is apparent. However, the 
overall wave focusing pattern behind the shoal at $„ = 45° is very similar to that at $a = 0°, 
showing that the model works reasonably well for a large angle of incidence. 

The height of the shoal in the above example is 2/3 of the water depth on the flat 
bottom, indicating an unreasonably high shoal considering the normal situation in real 
cases. Dalrymple et al (1988) have tested the model for shallower shoals and showed that 
the bigger the shoal height, the bigger the asymmetric distortion to the focusing pattern for 
the same angle of incidence. They also have presented a simple theoretical analysis regarding 
the accuracy of the model in terms of lateral depth variation and wave propagation angle, 
concluding that in order for the present model to be accurate for a large angle of incidence, 
the lateral depth variation should be small. 
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Figure 10: For caption see next page. 
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Figure 10: Wave focusing pattern behind the circular shoal used in the experiment by Ito 
& Tanimoto (1972).   Contours indicate wave height normalized with respect to incident 
wave height,  (a) 9a = 0° ( = Present model, = Parabolic model), (b) 0O = 45° 
(Present model), (c) 60 = 45° (Parabolic model). 

4   Conclusion and discussion 

Two wide-angle water wave propagation models using the spectral Fourier method have 
been reported, one for straight and parallel depth contours and the other for irregular 
bathymetry. In both of the models, the wave field at the initial row (x = 0) is Fourier 
decomposed into directional modes and the evolution of each mode due to bottom variation 
is calculated by marching along the x direction; finally, the real wave field is recovered by 
taking the inverse Fourier transform in the y direction. 

All the examples presented are for a monochromatic wave train or two intersecting 
waves. As demonstrated in the example of two intersecting waves past a breakwater, a 
directional wave with single frequency can be modelled easily by the present models. If the 
steady state is assumed so that the interaction among the. waves with different frequencies 
is neglected, the extension of the models to the random directional wave field can be made 
by superposing the requisite number of waves with different frequencies, with appropriate 
random phases. 

Nonlinearity was included in the model by correcting the wavenumbers iteratively using 
the nonlinear dispersion relationship, (22). Wave-current interaction also could be included 
by using the following dispersion relationship 

<r = u> + k • U (28) 

where <r = 2-K/T is newly defined as the angular frequency, u is given by (22), and U is the 
depth-mean current vector which is assumed to be known. 
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