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CHAPTER 1 

NONLINEAR DIFFRACTION BY A VERTICAL CYLINDER 

David L. Kriebel * 

ABSTRACT 

A theoretical solution is developed for the interaction of second-order Stokes waves with 
a large vertical circular cylinder in water of finite depth. The solution is obtained in terms 
of the velocity potential such that any kinematic or dynamic quantity of interest may be de- 
rived, consistent to the second perturbation order. In this study, the second-order wave field 
around the cylinder is determined, showing the modification of the incident Stokes waves 
by wave-wave and wave-structure interactions, both in the reflection-dominated up-wave 
region and in the diffraction-dominated down-wave region. The theory is then compared to 
experimental data for wave runup and rundown amplitudes on the cylinder as well as for 
wave crest and trough envelopes in the up-wave and down-wave regions. 

INTRODUCTION 

Over the past 15 years, numerous theories have been proposed for the problem of the 
interaction of second-order Stokes waves with a fixed vertical circular cylinder. The first- 
order problem - the linear diffraction theory - was solved by MacCamy and Fuchs (1954); 
however, the second-order problem has proven more difficult to solve and, at present, none 
of the proposed solution is universally accepted. A review of all previous theories for the 
nonlinear diffraction problem is beyond the scope of this paper. Some of the most recent 
second-order diffraction theories for a vertical cylinder include those of Chen and Hudspeth 
(1982), Hunt and Williams (1982), Rahman and Heaps (1983), and Sabuncu and Goren 
(1985), while Garrison (1978) presents a nonlinear diffraction theory for arbitrary fixed or 
floating bodies. 

The goals of this paper are to review a theory for the second-order diffraction problem 
developed recently by the author and to present examples of the resulting second-order free 
surface and nonlinear wave runup. These features of the nonlinear free surface are found 
to differ significantly from the linear solution, unlike the second-order wave forces which 
most theories predict are only slightly larger than the forces derived from linear diffraction 
theory. Interestingly, few of the previous theories have considered second-order free surface 
features, despite the fact that the second-order free surface contains fundamental nonlinear 
effects for a very simple geometry that has been widely used in offshore construction. 
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THEORETICAL DEVELOPMENT 

The problem under consideration consists of a fixed, vertical cylinder of radius, a, in 
water of uniform depth, d, subjected to nonlinear periodic waves of height, H, propagating 
in the positive x direction as shown in Figure 1. It is assumed that the fluid is irrotational 
and incompressible such that a potential-flow solution may be obtained in terms of the 
velocity potential, $(r,0, z,t). This potential must then satisfy the Laplace equation plus 
appropriate kinematic and dynamic boundary conditions at the bottom, at the free surface, 
at the cylinder, and in the far field. 

incident 
Wave 

"upwave" 

//AVAV/A" SSSSSSSSSSS ^////^/^ 

(x,y) or (r,e) 

f" 

-*-x    -$- 

6=0 
"downwave" 

Figure 1. Definition sketch. 

Due to the complexity of the nonlinear boundary value problem, an approximate so- 
lution is sought through a perturbation expansion in which the velocity potential and the 
free surface elevation are expressed in series form as 

$ = $i + $3 + • • • 

n = <li + r/2 + (1) 

where the first-order term has a linear dependence on the wave steepness, kH, while the 
second-order term has a dependence like (kH)2, where k is the linear wavenumber. In 
addition, the free surface boundary conditions are expanded in a Taylor series about the 
still water level, z = 0. As a result, separate boundary value problems are obtained for each 
term in the perturbation expansion, $i and $2. 
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At first-order, the solution must be obtained for the linear boundary value problem, 
which may be expressed as 

V2*! = 0 (2a) 

&u = 0    on z = -d (26) 

*i« + 9*1, = 0    on 2 = 0 (2c) 

*ir = 0    on r = o (2d) 

lim r1'2 ($'u-ik$l) = 0 (2e) 
r—»oo 

where the combined free surface boundary condition, (2c), is particularly important since it 
governs the wavenumbers of the linear solution and since it changes dramatically at second- 
order. The general solution for this linear diffraction problem has been given by MacCamy 
and Fuchs (1954) as the real part of 

$x=      i9H cozh k{d + z) ^ a    \ ,  „.-,        J»(H 
2<T       cosh kd f)A,[j'B(*r)-^^ff-(fcr)]co.n««-fa' (3) 

where /?„ = (2 - Sn0)i" and where Sn0 is the Kronecker delta function. In (3), the infinite 
series of Bessel functions Jn{kr) represents linear incident plane waves while the Hankel 
functions Hn(kr) represent outwardly-propagating linear scattered waves. 

At second-order, the governing boundary value problem is considerably more compli- 
cated due to nonlinear forcing terms which appear in the free surface boundary condition. 
The second-order boundary value problem may be given by 

V2$2 = 0 (4a) 

$2« = 0    on 0 = -d (46) 

• = -*n I*i«» + 9*1**] 

- 2 I *ir*ir( + -^SieSiot + *i**i*t I     on z •- 
(4c) 

$2r = 0    on r = a (4d) 

and a form of the radiation condition, which is not well-posed for the second order problem. 
Because of the quadratic forcing terms on the right side of (4c), the second-order boundary 
value problem is nonhomogeneous. The second-order solution is therefore expected to have 
both particular solutions, which represent forced wave motions due to nonlinearity in the 
free surface boundary condition, as well as complementary or homogeneous solutions, which 
represent free scattered wave motions at second-order. 

By substituting the first-order solution in (3) into the second-order free surface bound- 
ary condition in (4c), it is found that the quadratic forcing is periodic and oscillates at twice 
the frequency of the linear waves. The quadratic forcing is also an even function of 0, such 
that (4c) may be rewritten in series form as 

*2(t + 9*2, = -i^- £ [/„"(r) + fiS(r) + /«(r)] co.»0e-«* (5) 
n=0 

Expressions for the radial functions ]U(r), fis(r), and f%s{r) are given by Hunt and 
Williams (1982), Sabuncu and Goren (1985), or Kriebel (1987), where each term repre- 
sents a distinct nonlinear product term from the first order incident and scattered waves. 
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In (5), the fj? term represents plane-wave forcing which leads to the expected second- 
order plane-wave component at wavenumber Ik, as found in the usual Stokes second-order 
wave theory. This term would exist at second-order even if no cylinder were present and 
is the result of nonlinear self-interactions of the first-order incident waves. The remaining 
forcing terms, f• and f„s, are the result of nonlinear cross-interactions of the first-order in- 
cident and scattered waves and nonlinear self-interactions of the first-order scattered waves, 
respectively. These forcing terms behave much like a non-uniform pressure field applied to 
the free surface and they generate additional cylindrical standing and outwardly progressive 
waves at second-order. 

The solution for the second-order velocity potential may be obtained by separating the 
potential $2 into particular solutions, if, and complementary or homogeneous solutions, 
*", as 

$2 = $1" + $? (6) 

Based on (5), the particular solution may be further separated as 

•? = *& + *# + *# (7) 

The component, *^,, then represents the forced wave motion generated by the ffj forcing, 
which is the usual Stokes plane wave component given by the real part of 

,, _      SgjkHf (tanh2fcrf-l) coring+ «) ^ ,...„-,-«*       ,., 
*»"-•*     8*      (2*ta„h2ifcd-ManhM      cosh2fcd      h,^nU2kr) cosnSe (8) 

The wavenumber k2 is the characteristic free wavenumber for the second-order problem and 
satisfies the second-order dispersion relationship 

4cr2 = gk2 tanh k%d (9) 

which can be obtained from the homogeneous form of the free surface boundary condition 
in (4c) or (5). It is found that k2 approaches 4k in deep water but approaches 2fc in shallow 
water, where ^p becomes infinite due to resonant forcing in the free surface boundary 
condition, as is well known. 

In the same way, other forced wave components exist in the "incident" wave field due 
to the remaining f^s and f%s forcing terms. The solution for these second-order forced 
waves is found in closed integral form based on a source distribution method, which may be 
formalized by application of either Green's theorem or through use of Hankel transforms. In 
this analysis, the solution is first obtained for an isolated point source of pressure oscillating 
on the free surface. This result is then generalized by integrating over the free surface in r 
and $, to account for the distribution of the actual quadratic forcing found in the second- 
order free surface boundary condition. The solution follows that of Wehausen and Laitone 
(1960) for an arbitrary pressure distribution on the free surface; and, the resulting velocity 
potential due to the distributed forcing terms, f^s and /*s, may be shown to be given by 

«« + «f# = -i«! £ cosne Lr£ cosh Mcosh k2(d + .) 
ip        ^ %ak    ^0 [       k      sinh2M + 2M 

J0    k cosh Kd[K tanh Kd — k2 tanh k2d) 
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where "PV" represents a Principal Value integral and where Dn (K) represents a wavenumber 
spectrum for cylindrical wave motions based on a Hankel transform as 

/•CO 

A.M=/     r'[/^(r') + /r(r')]^K)<ir' (11) 

In the solution given by (10), the principal value integral represents standing wave 
motions based on a continuum of wavenumbers that are required to fit the complicated free 
surface boundary condition arising from the quadratic forcing. Away from the cylinder, 
however, only the second-order free wavenumber, fc2, is important and the integral term 
yields a cylindrical standing wave in the far field. From the source distribution method, 
the wave motions generated by any point source must satisfy the Sommerfeld radiation 
condition and yield outwardly propagating wave motions far from each source. Therefore, 
the additional term in the solution (10), represented by the component containing Jn(k^r), 
is required so that the entire solution satisfies a form of the radiation condition. 

The complicated forced-radiated waves given in (10), together with the incident bound 
second-harmonic given in (8), satisfy the nonlinear free surface boundary condition but 
do not satisfy the no-flow condition on the cylinder boundary by themselves. By allowing 
these waves to interact with the cylinder, second-order scattered waves must exist which are 
given by the complementary or homogeneous solutions in (6). These solutions must satisfy 
the Laplace equation, the bottom boundary condition, the Sommerfeld radiation condition, 
and the homogeneous form of the free surface boundary condition; and, they may be found 
from the general set of eigenfunction solutions for cylindrical waves as given by Dean and 
Dalrymple (1984) as 

$>2   = Yj a„o cosh k2(d+ z)Hn{k2r) cos n6 

"=° _. (12) 
+ 2__, zL a"' cos "lift + z)Kn («2y) cos nff e  *2<7t 

From the homogeneous form of the second-order free surface boundary condition, two 
second-order dispersion relationships result which specify the wavenumbers It2 and K^J. 

For outwardly propagating second-order free waves 

4cr2 = gk2 tanh k^d (13) 

which was given in (9); while for the standing or evanescent wave modes, the wavenumbers 
are given by 

4<r2 = — gK,2j tan«2yd (14) 

which has infinitely many positive roots, K2J, given by 

U - j)*' S K2,h < jn 

The homogeneous solutions therefore consist of outwardly radiating second-order free 
waves as well as local standing waves, i.e. evanescent modes, both of which are determined 
to within a set of unknown constants. The unknown coefficients, o„0 and a„y, are then 
determined by satisfying the no-flow condition on the cylinder. This is accomplished with 
the same procedure that is used to obtain the first-order scattered wave solution, based on 
the orthogonality properties of cosh fc3(d+«) and cos K2j(d+z). The method is straightforward 
but lengthy; thus, it will not be given in detail in this paper. 
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The final solution at second-order is completely specified by combining the particular 

solutions in (8) and (10) with the complementary solutions obtained from (12) after eval- 

uating the unknown coefficients. The solution for the second-order velocity potential is 

derived in detail by Kriebel (1987) and may ultimately expressed in closed integral form as 

.g{kH)2 ^ 
$2 =-a    „,   '    >   cosnO 

2ka    *-• 

[JI(2ka) 
d cosh2k(d + z)finJn(2kr) - CioO, cosh k2(d + z)pn   "\,    \Hn(k2r) 

H'„[k2a) 

- Y, CiyCy COS K2y(d + *)& jyjj^XnM 

[r°° c H 
PV I     -j?-coshK.{d +z)Jn(Kr)dK - Co I2o cosh k2(d + z)j~ 

(k2r) 
(15) 

(k2a) 

.g^,cosK,(, + *)§M 

+C3C0 cosh k2(d + z) [Jn{k2r) - ^(^°)
)g„(fc2r)]] <Ti2<rt 

where the nondimensional coefficients are defined as 

COsh k2<i COS K2jd 

sinh 2^2^ + Ik^d 3      sin 2«2y<i + iKijd 

Ci = 
3 fc(tanh^ kd - 1)  

4 cosh 2kd[2k tanh 2kd — k2 tanh k2d) 

fc2(tanh2ta-l) 
4A:2 - k% 

1 «£>»(*) 

_ „ k2 (tanh2 kd - 1) fc2 (tanh2 fcd-1) 

1 
c2 4 cosh K(i(/c tanh Kd — k% tanh A^d) 

p «2AtWJ^H _   /- «2Z)n(/c)j;(«a) 
120'Jo («2-*?)      ^ %-io («2 + «ly)     ^ 

In the solution given by (15), terms enclosed in the first bracket on the right hand 

side represent: (1) the forced Stokes plane wave component at wavenumber 2k and (2) 

the free cylindrical wave motion due to the scattering of this Stokes plane wave from the 

cylinder. These terms are found to be identical to a portion of the solution proposed by 

Chen and Hudspeth (1982), derived using the method of Green's functions. Terms in the 

second bracket then represent: (1) the remaining forced-radiated wave motion due to other 

nonlinear wave-wave interactions as well as (2) free scattered waves due to the interaction 

of these forced-radiated waves with the cylinder. Although derived in an independent way, 

the solution for these forced wave motions in (10) is identical to that proposed by Garrison 

(1979), also through application of Green's theorem, as Garrison's Green's function for the 

free surface potential can be reduced analytically to that given by (10) for a circular cylinder. 

Garrison then obtains the scattered wave solutions numerically in terms of a second Green's 

function and an unknown source distribution on the cylinder. The scattered wave motions in 

the proposed solution are obtained in closed-form based on the complete set of eigenfunction 

solutions for the homogeneous boundary value problem. 
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SOLUTION FOR NONLINEAR FREE SURFACE 

The first and second-order velocity potentials are substituted into the dynamic free 
surface boundary condition to evaluate the form of the free surface around the cylinder. 
Based on the perturbation expansion technique, $ and t; are expanded in power series form, 
and the dynamic free surface boundary condition is then expanded in a Taylor series about 
the still water level, z = 0. The resulting expression for the water surface, consistent to the 
second perturbation order, may then be obtained as 

»?1 + »fe = --*« " "*2< " 4*l<*lt* - ^    *?r + 4*?9 + $1* (16) 
9 9 9 29 L r J 

The resulting wave field, based on the right side of (16), is found to include: (1) linear 
incident and scattered waves, (2) second-order components from the second-order velocity 
potential, and (3) second-order components derived from nonlinear product terms of the 
first-order wave field. These last quadratic terms are found to include both steady com- 
ponents as well as components that oscillate at twice the frequency of the linear waves. 
All terms may be obtained from a straightforward substitution of the velocity potentials in 
(3) and (15) into (16); however, the results are quite lengthy and include several double- 
summations. The interested reader may refer to Kriebel (1987) for details. 

In Figures 2 and 3, contours of wave crest amplitudes around the cylinder are shown 
for the linear and nonlinear diffraction solutions respectively. An example of the predicted 
wave crest and trough envelopes along the x-axis, as well as around the circumference of the 
cylinder, is then shown in Figure 4, where second-order mean water levels are also shown. 
In each figure, results are normalized by the incident wave amplitude and are given for a 
reference case where ka = 1.0, kd = 1.57, and where kH = 0.5. It is noted, however, that 
while the nonlinear solution in (15) and in Figure 3 is a function of kH, the nondimensional 
linear solution in (3) and in Figure 2 is not a function of the wave steepness. 

In the up-wave region, the linear scattered wave opposes the linear incident wave to 
form a partial standing wave system. Second-order components generally increase the crest 
heights in the antinodes while reducing trough amplitudes. It is found, however, that terms 
from the second-order velocity potential in (10) are mostly out-of-phase with the linear 
solution and tend to decrease crest heights while other second-order components are in- 
phase and lead to the expected increase in crest heights. The nonlinear increase in crest 
heights is most pronounced on the up-wave cylinder boundary, where runup amplitudes are 
significantly increased relative to linear theory. Spatially varying mean water levels are also 
found which are the cylindrical analog to the "corrugated" mean water levels associated with 
standing waves in front of a vertical plane barrier. These components are superimposed 
upon the usual uniform set-down associated with the two-dimensional Stokes wave theory. 

In the down-wave region, linear incident and scattered waves propagate in generally the 
same direction and do not generate strong quadratic interactions compared to the up-wave 
region. At second-order, however, scattered free waves and diffracted waves from the up- 
wave region propagate away from the cylinder in the down-wave region. These waves are 
superimposed on the linear waves and their bound second harmonics to produce spatially 
varying crest and trough envelopes, analogous to those produced by the superposition of 
first- and second-order free and forced waves in a wave flume. These interactions vary in 
both r and 9 such that significant diffraction patterns are obtained with localized areas of 
constructive and destructive wave interactions. One result of these interactions is that there 
is also significant recovery of the wave crest amplitude immediately behind the cylinder at 
second-order, something that is not predicted by the first-order diffraction theory. 



24 COASTAL ENGINEERING— 1988 

.3'9 

Figure 2. Wave crest amplitude contours for linear diffraction theory, for example case with 
ka = 1.0 and kd = 1.57. 

Figure 3. Wave crest amplitude contours for nonlinear diffraction theory, for example case 
with ka = 1.0, kd = 1.57, and kH = 0.5. 
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LINEAR THEORY 

SECOND OROER HERN 

SECOND ORDER THEORY 

Figure 4.  Wave crest and trough envelopes along x-axis, for example case with ka = 1.0, 
kd = 1.57, and kH = 0.5. 

EXPERIMENTAL VERIFICATION 

The second-order diffraction theory is verified through comparison to laboratory data 
for: (1) wave runup and rundown envelopes around the circumference of the cylinder and 
(2) wave crest and trough envelopes along the x-axis out to a distance of 5 times the 
cylinder radius. The experiments were conducted in the directional wave basin at the 
University of Florida Coastal and Oceanographic Engineering Laboratory. The water depth 
was maintained at 45.0 centimeters with a cylinder radius of 16.25 centimeters, such that a 
constant depth-to-radius ratio of 2.77 was used for all experiments. 

The experiments were conducted with monochromatic long-crested waves and a total of 
22 experiments were carried out covering a broad range of the nondimensional parameters. 
Relative cylinder sizes remained in the diffraction regime with ka values from 0.271 to 
0.917. Relative water depths remained in the intermediate depth regime kd values from 
0.75 to 2.536. Values of the wave steepness were selected such that Stokes theory would 
remain convergent, although some waves with very high steepness were also tested; kH 
values ranged from 0.085 to 0.806. Stokes second-order theory is formally expected to be 
appropriate for only 8 of the 22 experiments, while higher order wave theories would be 
most appropriate for the remaining conditions. 
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Wave runup data were obtained by video-taping the water surface on the circumference 
of the cylinder as waves passed a grid painted on the outside of the cylinder. Data analysis 
included selecting a 20 to 30 second period of steady state conditions and then averaging the 
wave crest runup and trough rundown for 10 waves every 15 degrees around the cylinder. 
For 12 of the experiments a video record was also made of waves passing a "photopole" 
array, which consisted simply of 10 thin vertical rods placed in a linear array along the x 
axis as depicted in Figure 5. The photopole data consists of the wave crest and trough 
envelopes at each pole location, averaged over 10 waves. The photopole experiments were 
conducted separately from the runup experiments so that the presence of the poles would 
not disrupt the other measurements. 

Cylinder with Grid 
for Runup Experiments 

r=5a   r=4a r=3a   r=2a   r=a 

Photopole 
Array 

/ 

Figure 5. Experimental set up showing photopole array along x-axis. 

Examples of the first- and second-order theories compared to laboratory wave runup 
and rundown data are shown in Figures 6 through 8. Based on a comparison of the data 
to linear theory, several general conclusions may be reached. Maximum wave runup at the 
front of the cylinder is greater than that predicted by linear theory in all cases and the 
runup distribution is poorly predicted by the linear theory. At the rear of the cylinder, 
the wave crest amplitude is also greater than that predicted by linear theory in all cases. 
Finally, the rundown amplitudes in the front and rear of the cylinder are not as large as 
predicted by linear theory. 

In contrast, the nonlinear diffraction theory provides much better agreement for runup 
distributions and maxima. From Figure 6, for the smallest relative cylinder size and depth 
tested, the measured runup profile is almost exactly predicted over all angular positions by 
the second-order theory, even though this wave steepness is just at the limit of validity of 
Stokes theory where cnoidal theory may be more appropriate. The rundown envelope is 
well-predicted only over the rear half of the cylinder in this case. 
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For larger values of ka and kd, second-order predictions for wave runup distributions 
are in good agreement with the data for conditions where Stokes second-order theory is 
expected to be valid. At higher values of kH, however, like that shown in Figure 7, the 
nonlinear theory predicts substantially larger runup than linear theory but still tends to 
underpredict the maximum runup. The rundown envelope is predicted fairly well at front 
and rear, however, the large trough amplitudes predicted near 75° are not displayed in the 

data, exect for waves of low steepness. 

In Figure 8, the runup and rundown envelopes are predicted very accurately, this time 
even for a condition where Stokes 3rd or higher order theories are most appropriate and 
where the wave steepness is at nearly 70 percent of the theoretical breaking steepness. In 
this case, both the maximum runup at the front and at the rear are predicted almost exactly. 
The rundown distribution is also well-predicted over the leading half of the cylinder, but 
again is not well-predicted along the sides of the cylinder. 

LINEAR rtlEOBT 

SECOND ORDER MEAN 

SECOND ORDER THEORY 

HERSUREO - RVERRGE 

MEASURED - MRX/MIN 

5. oo      1T6IW—W6.00•  SSTra        iTo 

Figure 6. Example of wave runup distribution for ka = 0.271, kd = 0.750, and kH = 0.215. 

In Table 1, the measured maximum crest runup is compared to both linear and nonlinear 
diffraction theories for all experiments. The results indicate that the maximum runup 
exceeds that predicted by linear theory by 13 to 83 percent and by 44 percent on average for 
the experimental data set. In contrast, the second-order theory overpredicts the maximum 
runup by 1 to 5 percent for the first set of conditions, predicts the measured runup to within 
0 to 22 percent for most cases, and underpredicts by more than 40 percent for only two 
tests where the steepness was near breaking. In general, the data exceeds the nonlinear 
theory by 11 percent on average and by only 8 percent if the two conditions near breaking 
are excluded. 
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5. 

LINEAR THEORY 
SECOND OROFR M;~AN 
SECOND ORDER THEORY 
MERSURED - AVcRRGE 
HER5URED - HAX/M1N 

--© e 

Figure 7. Example of wave runup distribution for ka = 0.374, kd = 1.036, and kH = 0.286. 

  LINEAR THEORY 

  SECOND ORDER HERN 
  SECOND ORDER THEORY 

Q> MERSURED - AVERRGE 
£ MEASURED - HflX/MIN 

Figure 8. Example of wave runup distribution for ka = 0.917, kd = 2.536, and kH = 0.631. 
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Table 1. Experimental results for maximum wave runup 

ka kd kH % Diff. % Diff. 
Linear Nonlinear 

0.271 0.750 0.132 27 -2 

0.178 36 -5 

0.215 48 -1 

0.308 0.853 0.085 16 1 

0.137 33 5 

0.182 45 6 

0.250 65 13 

0.296 78 13 
0.374 1.036 0.122 13 0 

0.205 36 15 

0.286 56 19 

0.385 69 16 

0.402 76 18 
0.481 1.332 0.186 13 7 

0.317 20 4 

0.438 35 9 
0.530 80 40 

0.631 1.745 0.683 61 22 
0.684 1.894 0.391 18 5 

0.572 43 22 
0.917 2.536 0.631 25 0 

0.806 83 43 

Examples of the photopole experiments are presented in Figures 9 and 10. The visual 
observations of the wave crest and trough envelopes are compared to the first and second- 
order theoretical solutions, which have been extended out to r = lOo to give a better 
indication of the overall scattering and diffraction patterns along the x axis. In general, the 
photopole data seem to verify the general features of the wave envelopes predicted by the 
second-order theory. For the smaller cylinder size, in Figure 9, the second-order scattered 
waves lead to additional nodes and antinodes in the up-wave region compared to linear 
theory. The photopole data confirm the positions and magnitudes of these maxima and 
minima for both the wave crest and trough on the up-wave side. On the down-wave side, 
the second-order wave components do not produce significant modulations in the envelopes; 
and, to within measurement accuracy, the data verify this theoretical prediction as well. 

The data in Figure 10, for the largest cylinder size tested, show that both the predicted 
and measured envelopes are similar to the linear envelope except that the crest elevations are 
increased while troughs are reduced. No secondary maxima are predicted in the envelopes, 
in contrast to the results at smaller values of ka. On the down-wave side, significant spatial 
modulation is predicted for this case. Data from the crest envelopes provide a rough verifi- 
cation of these nonlinear diffraction effects, as the presence and approximate spacing of the 
predicted envelope maxima and minima are confirmed, although the measured envelopes 
are more poorly defined. 
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Figure 9. Example of wave envelopes along x-axis for ka = 0.374, kd = 1.036, and kH = 0.286. 

Figure 10. Example of wave envelopes along x-axis for ka = 0.917, kd = 2.536, and kH = 0.631. 
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CONCLUSIONS 

The proposed second-order diffraction theory seems to rigorously account for nonlinear 
wave components including second-order forced waves due to nonlinearities in the free sur- 
face boundary condition as well as second-order free waves due to the nonlinear scattering 
process. Based on comparisons to laboratory data, the theory is then found to realistically 
predict the nonlinear characteristics of the wave field surrounding the cylinder. A compar- 
ison of the theory to previously proposed nonlinear diffraction theories shows substantial 
agreement in portions of the solution, but not in the entire solution, with the theories of 
Chen and Hudspeth (1982) and Garrison (1979). Finally, the proposed second-order theory 
seems to be valid for the same relative depth and wave steepness conditions for which the 
usual Stokes plane wave theory is valid. 
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