CHAPTER 193

A Three Dimensional Model of the Gulf of Alaska

Shiao-Kung Liu and Jan J. Leendertse

Abstract

This paper presents the development of a three dimensional
model of the Gulf of Alaska. The model extends between the Van-
couver Island and the Aleutian Islands covering approximatedly
1.5 million square kilometers over the northern Pacific Ocean.
Formulated on an ellipsoidal horizontal grid and variable verti-
cal grid, the model is schematized over a 81 x 53 x 10 grid
structure. The solution scheme is implicit over the vertical and
is programmed using one-dimensional dynamic array for the effi-
cient use of machine storage. The turbulence closure scheme for
the non-homogeneous vertical shear is formulated so that the
potential and kinetic energetics are monitored and transferred in
a closed form.

The hydrodynamic model is coupled to a two-dimensional
stochastic weather model and an o0il-spill trajectory/weathering
model. The former also simulates stochastically  the
cyclogenetic/cyclolytic processes within the modeled area.

The paper also compares the computed results with the avail-
able field data. Good agreements are found in tidal amplitude and
phases as well as currents.

The Three-Dimensional Modeling System

The model of the Gulf of Alaska uses a modeling system which
consists of a three-dimensional hydrodynamic model, a two-
dimensional stochastic/deterministic weather model, and an oil
spill trajectory/weathering model (Fig 1).

The hydrodynamic model is formulated according to the equa-
tions of motion for water and ice, continuity, state, the balance
of heat, salt, pollutant and turbulent energy densities on a
three-dimensional variable grid. In the vertical, the momentum
and constituent transport over the variable layers are solved
implicitly. The horizontal grid network coincides with the global
ellipsoidal system and has a one-to-one mapping to a Mercator
projection for graphical outputs. The derivation of the model
equation and the comparison between other layered models are
available in the open literature, eg. Liu and Leendertse, 1978,
in which aspects such as open boundary conditions, numerical
stability, solution discontinuity, and conservation properties
are also discussed.
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turbulence-closure scheme,
layer is

In the vertical
production term from the surface

parameterization of the wind-wave generation mechanism.

energy

computed from the
This ap-

proach thus circumvents certain difficulties associated with the
traditional two-equation model in which a symmetry condition is

assumed (as a moving wall, same as the bottom).

The model is capable of having arbitrary layer

number and

layer thickness, therefore minimizes numerical (pseudo) mixing in

deep water. In deep water,
pronounced than in the shallower, well-mixed areas.

the stratification is usually more

BERING/CHUKCH|
MODEL
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Fig. 2-- A sub-model of Bering Sea covering the area of Bristol Bay and a portion
of the Gulf of Alaska. Insert map at the lower left corner is another

sub-model of this one, covering the area of [zembak Lagoon.
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The model of the Gulf of Alaska

The model of the Gulf of Alaska is the largest model cover-
ing the Alaskan coastal waters developed by the authors. Alaskan
coast line stretches longer than the other states of the con-
tinental U. S. combined. Because of the complex coastal features,
a series of nested submodels are needed to resolve the circula-
tion dynamics of the near shore lagoons and the ecologically sen-
sitive passages (Fig. 2). The nested models derive their boundary
condition from the larger model because conducting field work in
Alaska 1is both difficult and expensive. The embayment in the NE
corner of Fig. 2 is the Cook lnlet, where the largest astronomi-
cal tides in the Pacific are found; sometimes reaching 13
meters. Also present are the strong currents and residual cir-
culation induced by the nonlinear interaction between the advec-
tive mechanism and bethymetry of the coast.

The three dimensional perspective diagram in the upper part
of Fig. 3 illustrates the along-shore view of the higher modes in
the water level variation with the highest point at the head of
Cook 1nlet while the lower diagram shows the cross-shore
variations.

Figure 4 shows the computed co-tidal chart for the semidiur-
nal component and the comparison between the computed amplitudes
and phases at four locations where observed data are avaliable
(Schumacher and Muench, 1980). Fig. 5 through 8 present the com-
puted horizontal/vertical velocity components and the turbulent
energy intensities at levels 1,3,5,7,8,9 at a location near the
openning of Cook Inlet (Portlock Bank). At that location, the
computed hodograph . in Fig 9 nearly matches the observed current
ellipse.

The computed tidal ellipses for the entire Gulf of Alaska,
from Vancouver lsland to the Aleutian lslands are presented in
Fig. 10. 1n order to show the strong tidal currents within the
Cook 1lnlet and over shelf areas, the plotting scale is set at 200
cm/sec per grid spacing. The maxmum tidal excursions are found in
the middle of Cook Inlet where the tidal currents can reach
140 cm/sec in either direction. Currents over the shelf break can
also reach 70 cm/sec. The computed tidal residual current dis-
tribution within the Gulf of Alaska is presented in TFig 11. 1In
the figure, the maximum residual current in Cook Inlet is ap-
proximately 7.5 cm/sec, which is 5.5 percent of the local maximum
tidal current. Over the shelf and in the Shalikof Strait, the
direction of the residual current is primarily to the southwest.

Model Behavior and Discussion

In stratified geophysical flow, the density-induced vertical
exchange often has a time scale much shorter than its horizontal
baroclinic counterpart. 1t also plays an important role in the
coastal ecological balance via the euphotic/energetic processes.
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It therefore creates stringent demands on the accuracy of model-
ing. On one hand, advances made in other discipline, such as the
aerodynamic modeling, can often be applied to the geophysical
flows, but, on the other hand, the differences in the free-
surface and other boundary treatments makes the closure tech-
nique not necessarily identical for stratified flows. Specially

Anchorage
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Fig. 3--Three~dimensional perspective diagrams illustrate the along-shore view of
higher modes in the water level variation with the highest point at the head of
Cook Inlet near Anchorage (upper diagram). The lower diagram shows the cross=—

shore variation.
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Fig., 5--The computed east-west velocity components at
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rotary-type and can reach a maximum speed of 70 cm/sec.
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Driven only with 2 tide (monochromatic wave) at the open boundary
the proposed numerical scheme is capable of producing the cascade of energy
distribution according to the universal "minus five-third' through the
models nonlinear advective process (Hinze, 1959).

T T T
- Bl LAYER | — bcw LATER 7 — BCo1M LAYCR 11
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|l

£, frequency {tr”') f, frequeacy () f, frequency )

For the stratified fluid, the computed spectra of the vertical
displacements (in the surface layer, within pychocline and near bottom)
and significant energy distribution agree with the observed spectra of
the first mode of internal waves {(Gordon, 1978).

Fig. 12
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because coastal flows are primarily two-dimensional. Recent find-
ings on the non-equilibrium statistical characteristics of tur-
bulence have shown that even the universal Kolmogorof-constant of
the tubulence spectrum has to be modified for two-dimensional
turbulence. Models relying on the Richardson number-related
?arameters are specially susceptible to field measurement
inaccuracies.

Consequently, over the past several years, we have modified
our  earlier models from requiring Richardson-number-related
parameters to an energy balance approach. In the new method, the
production and dissipation terms in the vertical energy
turbulence-balance equation takes this form:

e —x, 2 2 e
- D, =3, L/e [(GZu o+ (5267) ] + a, Le :z& (52“52) _ a2e3/2/L
(1) 2 3

Where the first term denotes production, the second term repre-
sents the portion supplied that is wused in potential energy
increase, and the third term is dissipation. Some computational
results are presented in Figs. 12 and 13. For example, when
driven only with M2 tide (a monochromatic wave) at the open
boundary, the numerical scheme is capable of producing the cas-
cade of energy partition according to the universal "minus five-
third" law through the model's non-linear advective process (top
graphs of Fig. 12, also see the recent measurements by

L T T T 1

Comparison of reietive turbulence intensities
between the three-dimensional model for stratifled
flow field and the standerd verification curve of
airflow in pipe measured by Laufer (1954)
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Fig. 13-~ When the computed relative turbulence intensities at 15 layers are
normalized with respect to the bottom distance, they are nearly the same when
compared with the standard verification curve of airflow measured in brass pipe
(made by Laufer for NACA, later NASA).
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Heathershaw, 1979 and Elliott, 1984). Peaks of the spectra for
two-dimensional turbulence are not uniquely located, however, it
depends on the energy input and the relative location from the
boundary (the so-called localization factor). The lower graphs of
Fig 12 show the computed partitions of spectral energy of the
vertical displacement near the pycnocline agree with the observed
spectra of the first mode of internal waves (Gordon, 1978). When
the computed relative turbulence intensities at various layers
are normalized with respect to the bottom distance, they are
nearly the same when compared with the NASA standard verification
curve of airflow measured in brass pipe (made by Laufer). The in-
sulation of momentum transfer across the pycnocline is evident

It is also clear that in stratified flows, more measurements and
better model formulation are still needed.

Acknowledgments

This study was supported by the U. S. Bureau of Land Manage-
ment through interagency agreement with the National Oceanic and
Atmospheric Administration (NOAA), under which a multi-year
program responding to needs of petroleum development of the
Alaska Continental Shelf is managed by the Outer Continental
Shelf Environmental Assessment Program Office.

Thanks go to our RAND colleagues Mr. A. B. Nelson and Mrs.
G. Coughlan for their indispensable efforts in simulations and
report preparation.

References

Elliott, A. J.,(1984): Measurements of the turbulence in an abys-
sal boundary layer, Jour. Physic. Oceano. Vol. 14, No.11l, p 1779-
1786.

Gordon, R. L.,(1978): Internal wave climate near the coast of
Northwest Africa during JOINT-1, Deep Sea Res. Vol. 25, pp.625-
643.

Hinze., J. 0., (1959): Turbulence, McGraw-Hill, New York.

Heathershaw, A. D.,(1979): The turbulent structure of the bottom
boundary layer in a tidal current. Geophys. J. Roy. Astron. Soc.
Vol. 58, pp. 395-430.

Laufer, J.,(1954): The structure of turbulence in fully developed
pipe flow, National Adv. Comm. on Aero., TR-1174.

Liu, S. K., and J. J. Leendertse, (1978): Multidimensional
numerical modeling of estuaries and coastal seas, in Advances in
Hydroscience. Vol 11, Academic Press. New York.

Schumacher, J. D., and R. D. Muench, (1980): Physical oceanography
and meteorological conditions in the northwest Gulf of Alaska.
NOAA TM-ERL-PMEL-22, Oct. 1980.





