
CHAPTER 177 

Wave Diffractions by Rows of Vertical Cylinders 
of Arbitrary Cross Section 

Akinori Yoshida, Norio Ii3a, and Keisuke Murakami 

1. Introduction 

Wave diffractions by a number of (a group of or a row of) 
vertical cylinders have been investigated in connection 
with, e.g., multilegged offshore structures (Spring and 
Monkmeyer(1974), Ohkusu(1974), Chakrabarti(1978), Mciver 
and Evans(1984), etc.); Wave-Power absorption devices (Miles 
(1983), Falnes(1984) , Kyllingstad(1984) , etc.); Wave 
barrier systems (Massel(1976), Kakuno and Oda(1986), etc.). 
Most of the previous works were, however, mainly aimed at 
the wave diffractions by cylinders of circular cross section 
and/or by cylinders of relatively small dimensions compared 
to wave length. 

In this paper, we describe a simple yet versatile analyti- 
cal method to solve wave diffractions by infinite rows of 
vertical cylinders. In the method, it is assumed, in addi- 
tion to usual linearised small amplitude assumptions, that: 
the row of cylinders is composed of infinite number of 
surface-piercing evenly spaced equal cylinders fixed on sea 
bottom; incident wave direction is perpendicular to the row; 
the number of rows may be arbitrary, at least in principle; 
the cross sectional shape of the cylinders may be arbitrary 
as long as it is symmetrical with respect to the incident 
wave ray; and the cylinders are relatively large compared to 
incident wave length so that inertial forces are predominant 
to drag forces. 

2. Formulation 

We consider the diffractions of a regular plane wave by a 
row or rows of surface-piercing vertical cylinders fixed in 
water of uniform depth h. It is assumed that the row is 
composed of infinite number of equal cylinders evenly spaced 
(2b distance between adjacent cylinders) and that a plane 
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B(y=d) 

Figure 1.  Definition sketch 

wave of small amplitude 5o , radian frequency (f , wave number 
k, is incident on the row at right angle. Thus, the wave 
motion is periodic along the row of cylinders. This 
situation is equivalent to wave diffraction for a cylinder 
placed midway in a wave tank of the same width as the 
spacing interval 2b (e.g., See Sorokosz (1980), Taylor and 
Hung(1986)). 

In the following formulation, we solve the equivalent 
problem by using an integral-equation and Fourier expansion 
techniques similar to that adopted by Sorokosz(1980): here 
in the present method, however, complicated mathematical 
form of Green function is not needed. 

Cartesian co-ordinates are taken with the x and y axes in 
the horizontal plane of the water surface and the z axis 
directed vertically upwards. The row is arranged along x 
axis. A sketch of the horizontal section is given in figure 
1. 
The fluid is assumed to be inviscid and incompressible and 

the fluid motion irrotational so that it can be described by 
a velocity potential which may be expressed in the form 

0(x, y, z, t) = (gZola)$(x, y)Z(z) exp (tat) :D 

in which g is acceleration of gravity; <^>(x,y) is dimension- 
less function which represents horizontal distribution of 
the velocity potential; Z(z)=cosh(k(z+h))/cosh(kh); i= 
imaginary quantity (-/-l ) • 

Since  the velocity potential satisfies Laplace  equation, 
^>(x,y) satisfies the following Helmholtz equation, 
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V'<f>(x,y)+k2tU,y) = 0  (2) 

Now, introducing imaginary boundaries AB (indicated by S4 
at y=d) and CD (indicated by S2 at y=-l) as shown in figure 
1, we divide the fluid region into three regions, upstream 
region (1), downstream region (2) and truncated inner region 
(0) . 
The inner region (0) is a closed fluid region enclosed 

with the imaginary boundaries S2 and S4, the cylinder 
(indicated by SI) and the walls of the wave tank (indicated 
by S3). Thus, applying Green's theorem to the dimensionless 
function $^,(x,y) in the inner region (0) which satisfies 
Helmholtz equation (2), it can be expressed by the following 
Green's Identity Formula: 

&(•*) = —%-       \      ^o(Xb)-^G(kR) -GfrKyj^M*')}** . .(3) 

S1+S2+S3+S4 

where G(kR)=HP\kR)+H&»(kR*)   ; 

K0 is the Hankel function of the first kind and of order 0; 
X denotes the co-ordinates (x,y) of any point in the inner 
region (0) and Xj, on the boundary; R= |X-Xb| and R* = |X-X^| 
(X£ denotes the reflected image point of X^ with respect to 
the center line of the wave tank.); V is the outward normal 
to the boundary; <#=2 when X is on the boundary and othewise 
<X=4. 

The integration is taken counterclockwise and along a half 
of the boundary (indicated by thick lines in figure 1) 
because the fluid motion is symmetric with respect to the 
center line of the wave tank. 

By representing the dimensionress function of the 
reflected wave potential and the transmitted wave potential 
with 9°i and 9°2 > respectively, the function <f>^ in the 
upstream region and <f>^ in the downstream region may be 
written as 

$i(x,y)=txp(iky) + (p1(.x,y)  (4) 

$i(x,y) = <pAx, y)  ( 5 ) 

The function Y\  and 9*? also satisfy Helmholtz equation 

V*9>U, y)+k*<pU, </) = 0       (6) 

Applying the method of the separation of variables 
(9'(xJy)=x(x)Y(y)) to (6), we obtain the following ordinary 
differential equations, 



(7) 
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d'X/djr' + k'xX = 0 

d'Y/dy2+klY = 0 

& + kl=k' 

Solving (7) under now-flow condition on the wave tank wall 
and under condition that V-^(x,y) represents waves 
propagating toward the upstream direction and 9°?(x>y) 
waves propagating toward the downstream direction, we obtain 

 (8) 

¥i(x> V)= S Dn&n(y) cos (nitxjb)  ( 9 ) 

<Pi{x, y)= E CnPn(y)cos (nxxlb) 
71=0 

where 

j3„(v)=exp {-iy VM-inx/by} 

$n(y)=e*P [iy Vk*-(nnlby)     }       (10) 

For n which satisfies kb>n (n=0,l,...), (3n(y) and ^n(y) 
represent progressive wave modes, and otherwise (except for 
n when kb=n ) exponentially decreasing stationary wave 
modes. For the case of kb=n, (8) and (9) give no-propagating 
wave mode and imply a standing wave exists across the wave 
tank. 
Equations (8) and (9) show the Fourier series expansion of 

the dimensionless functions ^ and ^2 across the wave tank, 
thus for example on the imaginary boundary S4 (at y=d), the 
coefficients C B  (d) can be written as 

Cnpn(d)=~7- \   <pi{x,d)co%—^-dx         (11) 

where e=l/2 (n=0) and e=l (n+0). 
Consequently,  we obtain the expression of the dimensionless 
function cf\(x,y) in the upstream region (1) as 

M*,v)=^{ikv)+£&&[%% ^.cO.cos^cos^f ... (12) 

In the same way, in the downstream region (2), we obtain 

nnx , .      .  ~ )3»(v) f 2e f»  .  ,,   nns     } 
(13) 
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The  boundary conditions for the inner region (0)  can be 
written 

30O/9„=O  (SI 

00 = 02 

00 = 01 

S3) 

(S2: y=-l) 

(S4: y = d) 

(14) 

(15) 

(16) 

By  applying (4),(5),(12) and (13) to (15) and  (16),  equa- 
tions (15) and (16) are rewritten as 

4>a(x,-I)=<pt(x,—t) 

900 
dv 

~   2e     ff6     .       ,.      nits 
= E -v-a»   \   ¥W> -O-cos-T-as 

y=-l     n=0   «        (Jo 0 . 

<f>a(x, d) = exp (i'fcd) + ^(a;, d") 

^        _ffc exp (ikd) + f; •%«„ ( (* ^(s, d) • 
OV    y=d J!=0   0 I JO 

M7rs , )       «jr.£ 
cos —— as J-cos —r— 

(17) 

where  a»= VA;2— {nitjb)z 

In order to solve the integral equation (3) under these 
boundary conditions, we divide the boundary, SI, S2, S3 and 
S4, into a number of small elements ZlSj (j=l-Nl, 1-N2, 1-N3, 
1-N4 on SI, S2, S3 and S4, respectively). Now, assuming that 
9§ and its normal derivative dfy/dV are uniform on each 
element, and denoting them by <^(j) and <^( j) , we can 
approximate (3) by the following discretaised equation, 

r ivi m   A3 m i 
*»(*)=  E+E+Z + Z hGxMn-GxjUJfaV)) 

\J-1  J=l j=i  J=l) 
(18) 

where 

Gxj- 

Gxj~- 

(19) 

When the  point  X is on the center of any  element /IS; , 
equation (18_) gives a finite set of linear relations between 

•j(j) and <Jk(j) as 
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1A1           N2           A3           A'4     1                                            —  ,    .. 

E+E+E+E \{GuUj)-GuUi))       (20) 
i-\   i-\   i-\   J-I > 

(,-=l~JVl, 1~N2, 1~N3, 1~N4) 

Applying the boundary conditions (14) and (17) to (20), we 
obtain 

S (.Gij-5ij)Mf)+ S \(Gij~8ij)   -ZGitQjJVtU) 

2V4 

= -exp(*'fcd) S {(Gij~dij)+ikGij} 
->'=x  (21) 

where dij = l   (i = j)   and 5j_i = 0   (i*j); 

_        ~   2e      .„        tnzxi       nnxp  (22) 
Q}p= L -r-an^lopcos—-—cos—-— 

n=o o bo 

Since equation (21) holds for every i-th element, it 
provides (N1+N2+N3+N4) linear equations with respect to the 
same number of unknown quantities, y^(j) on SI, y^ J' on S2, 
5^(j) on S3 and ^j' on S4. Thus, solving these linear 
equations and using the boundary condition (17), we can 
obtain ^(j) and 9&( j) for all of the boundary element. The 
function (X) at any point in the inner region (0) can be 
evaluated by (18), and ^(X) and cf>'^^) by discretaised form 
of (12) and (13), respectively. 

The ratio of the wave amplitude S(X) at any point X to 
the incident wave amplitude *>0   is given by 

|CW/Co| = |«X)|         (23) 

The pressure p at the cylinder surface are evaluated from 
the relation p=-J30§>/3t) . Thus, the wave force F acting on 
the cylinder can be obtained from the integration of p 
around  the  cylinder   surface 

Fl2pg^h\\.aRh.khjkh\= 2 4>iU)Axilh 
(24) 

where P is the density of water; /Ixj is the x-compornent of 
ZlSi on the cylinder; N is the number of the elements on the 
cylinder. 

The reflection and transmission coefficients can be 
evaluated from energy flux of the reflected wave and the 
transmitted wave across the imaginary boundaries. The energy 
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flux  of   the   reflected  wave   Er  may  be  written  as 

*   ( o So \-JpRe 
-8t. 

Re [d<Pr~ 
• dz dt dx (25) 

where  2^r denotes the velocity potential of  the  reflected 
wave and it is given from (1), (4) and (8) by 

0r=-^| S C«j8„(»)cos^|z(2)exp(Krf) 
O    (n=0 0     ) 

Substituting (26) into (25), we have 

(26) 

Er _  £ Ian ,r  ., (27; 

where indicates  the energy flux of the  incident_ wave 
given by (fg g/8)(l + 2kh/sinh2kh)(tf/k); £=1 (n=0) and £ = l/2 
(n^O);  n  is the largest integer value among n's satisfying 
kb>n. Thus the reflection coefficient Kr is given by 

K, 
I n* ean 

n=o k 
Cn\ (28) 

In the same way, from the energy flux of the transmitted 
wave across the imaginary boundary CD, the transmission 
coefficient Kt is given by 

K^sl^-^ni 
Ei 

earn 
Dn\* 

n=0    k   

and the following relations should be satisfied 

(29) 

Snr-{|c»i2+|i>«i2}=i (30) 

3. Numerical Calculations and Experimental Verifications 

For the numerical analysis, the infinite series of (17) 
and (22) are replaced by a finite sum upto N*. The 
integrations in (17) are evaluated with the following 
discrete form 

<p(s,d) cos—— dsx  2 p(p)cos—r-^ii 
0 p=l b ,(31) 

and this shows discrete Fourie Transform of 9°, thus, it is 
clear, from the theorem of Finite Fourier Series approxima- 
tion,  that  N*  should be the same number as  that  of  thek" 
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divided elements on the imaginary boundary. 
Because the set of the imaginary boundaries is only for 

the creation of the enclosed fluid region to which Green's 
theorem is applied, the location of the imaginary boundaries 
has no physical grounds. Thus, the distance of the imaginary 
boundaries from the cylinder may be arbitrary and no 
significant difference occurs in numerical results. In the 
following numerical calculations, the locations of the 
imaginary boundaries were taken 3h away from the side of the 
cylinder and the size of the boundary elements were taken 
about ZlSj/h=0.2, 

1.0 

Kr 

0.5- 

I l                    1   i— 
£= a/b 

£ =0.8 a/h= 1.5 

/ /    °-4' 
/// 
//   ' /// 
1/ 

1 

0.6            • 

©j 
— 2b—t 
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N. \ 

\\ 
\\ 
\ 
1 
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Figure  2.  Reflection  coefficient for a  row  of 
circular cylinders 

2b/L 

Figure 3. Reflection and transmission coefficients 
for a row of rectangular cylinders 
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Figure 2 shows the reflection coefficient for a single 
row of circular cylinders. The diameter of the cylinder 2a 
is fixed to 2a/h=3.0 and three different spacing between the 
cylinders are made to give £(=2a/2b) of 0.4, 0.6 and 0.8. 
The reflection characteristics are very much dependent on 
the incident wave number. Near singular wave number (kb=n ) 
Kr decreases to zero, namely, waves transmits through the 
cylinder barrier with almost no wave reflection. It is noted 
that the smaller spacing between the cylinders does not 
necessarily mean the larger wave reflection. 

Figure 3 shows the reflection and transmission 
coefficients for a single row of rectangular cylinders. The 
spacing 2b is fixed to 2b/h=l0.0, and the width B of the 
cylinder is changed to give8(=B/2b) of 0.4, 0.6 and 0.8. 
The reflection characteristics much differ from those of the 
circular cylinders, and this shows that the cross-sectional 
shape of the cylinder is one of main factor for wave 
reflection-transmission characteristics. At the singular 
wave numbers where 2b/L=1.0, 2.0,...(L is the incident wave 
length), it is possible for a standing wave to exist across 
the wave tank (that is, along the row of the cylinders). 

i.o ka       2.0 

Figure 4. Wave forces for a row of circular cylinders 
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Wave forces corresponding to figures 2 and 3 are given in 
figures 4 and 5, respectively. Naturally the forces acting 
on the cylinders are in line with the direction of the 
incident wave. Thin solid curve with closed circle in figure 
4 represents wave forces acting on a single cylinder in an 
open-sea given by MacCamy and Fuchs. 

Figure 6 shows numerically calculated free surface 
amplitude around a square cylinder placed on the center line 
of the wave tank (the case of a row of square cylinders). It 
is noted that satnding waves appear in the x direction as 
well as in the upstream direction. 

To verify the present method, we conducted wave tank 
experiments for a row of circular cylinders, a row of 
rectangular cylinders and two rows of circular cylinders. 
The wave tank (4m wide X 20m long X 0.6m deep) in the 
laboratory of Civil Engineering Hydraulics, Kyushu 
University was used.  The diameter of the model  cylinders 

20 

1.0 

05 

0.5 1-0 

£ =B/2b 
2b/h=10.0  . 
D/h=0.5 

1.5       kh 

1 • 20 2b/L   ' 

Figure 5. Wave forces for a row of rectangular cylinders 
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Figure  6.  Perspective view of free surface amplitude for 
a row of square cylinders (kh=1.4, b/h=5.0, 
B/h=2.0; B is the side length of the square) 

were 1.2m, and the size of the rectangular model was 
2m by 0.2m. The water depth was kept 0.4m throughout the 
experiments. 

Setting the model cylinders midway of the wave tank, we 
measured water surface elevation around the cylinders at 
20cm by 20cm grid points with 6 capacity type wave gages. 
The  total number of measured grid points were about 200. 

The comparisons f 
amplitude between th 
in figures 7, 8 and 9 
drawn from experime 
compared to the theor 
the free surface is s 
9. ) because of meas 
agreements between 
surface amplitude are 
More precise comp 

respect to a contour 
number in the cont 
surface amplitude to 
very good agreement 
confirmed. 

or perspective view of free surface 
e theory and the experiments are shown 

Although the free surface amplitudes 
ntal data show rather rough surface 
etically obtained ones, especially when 
eriously disturbed, (for example, figure 
ured grid points are coarse, overall 
the  theory and  experiments  for  free 
very good, 
arison  is  given in figure   10 with 
map of water  surface  elevation.  The 

our lines indicates the ratio  of  free 
the incident  wave  amplitude.  Again, 
between the theory and  experiment  is 
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Theory 

2a/L=0.477 

2b/L=1592 

a/b=o.3    2a/h=3.o 

Figure 7. Comparison between theory and experiment for 
a row of circular cylinders 

Theory 

B/L=1.1U 

2b/L= 2-228   B/h= 5-0 

B/2b=0.5    D/B = 0.1 

Figure 8. Comparison between theory and experiment for 
a row of rectangular cylinders 
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Theory 

2a/L= 0.668 

2b/L= 2228 

H/L= 1.337   2a/h=3.0 

Figure 9. Comparison between theory and experiment for 
two rows of circular cylinders 

1.0 0.5 0 0.5      v/,   1.0 

~--~-,~- 1.0. 

Theory     B/h=5.0   D/h;0.5 kh:1.4   Experiment 1      b/h=5.0    J 

Figure 10. Contour map of free surface amplitude 
corresponding to figure 8. 
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4. Conclusions 

A simple analytical method using an integral-equation 
technique has been described for solving wave diffractions 
by rows of surface-piercing vertical cylinders evenly spaced 
on sea bottom. The feature of the present method is its 
easiness to treat diffraction problems of rows of cylinders 
of arbitrary cross-section and plural row of cylinders: 
changing the co-ordinates of the boundary elements along the 
cylinder is the only requirement for variations in the 
number of the rows and the cross sectional shape of the 
cylinders. 
The method can be easily extended to the case for 

floating cylinders with flat bottom and for submerged 
cylinders with flat top, by further applying the Green's 
Identity Formula for the expression ofthe wave motion in the 
region between the sea bottom and the bottom of the cylinder 
and in the region between the free surface and the top of 
the submerged cylinder. Such cases are related to the 
problems that frequently occur in Coastal Engineering field, 
e.g., reflection and transmission problems for rows of 
floating breakwaters, rows of submerged breakwaters, etc. 

The present method is limited to the case that an incident 
wave direction is perpendicular to the rows of cylinders. 
More realistic case of oblique incidence needs further study 
though several studies have been made for a row of circular 
cylinders by, e.g., Massel (1976) and Miles (1983). 
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