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An Analytical Model  for Ocean Wave-Soil-Caisson Interaction 
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Abstract 

An analytical model is developed to predict the soil responses 
induced by waves and caisson motion. The caisson is founded on a 
rubble bedding layer overlying a soil of finite depth. The responses 
are modeled by the Blot consolidation equations. Two approximations 
are employed to reduce mathematical difficulties: 1) a boundary layer 
approximation^ to decouple pore pressure and soil motion in the Blot 
equations and 2) a contact solution approximation for a thin elastic 
layer to address mixed-type boundary-value problems. 

1.  Introduction 

Caisson-type structures are commonly employed as breakwaters, 
bulkheads, and seawalls. Critical failure areas for these types of 
structures are the toe and underlying foundation. These failures 
often result from wave-induced scouring, high porewater pressure, and 
large stresses developed in the foundation soil. These processes may 
lead to rapid and deep erosion at the toe as well as liquefaction of 
the foundation material. Hence, an understanding of the failure 
mechanisms for the foundation and an evaluation of the foundation sta- 
bility are necessary. 

Durand and Monkmeyer (1982), Liu (1985), and Dias and Monkmeyer 
(1986) have developed analytical solutions to estimate the wave- 
induced dynamic porewater pressure underneath a fixed caisson or a 
fixed plate founded on a porous rigid seabed. However, Stematiu and 
Stera (1985) pointed out that the structure-soil interaction is 
extremely significant in the foundation design of a caisson. This 
interaction results in high local stresses in the soil skeleton. 
Attempts to model the combined effect of porewater pressure and dis- 
placements were made by Lindenberg et al. (1982) and Stematiu and 
Stera (1985) using finite element methods. Finite element models have 
the disadvantage that they do not provide the physical insight into 
the problem which is often revealed in an analytical solution. The 
first steps toward an analytical solution were presented by Mynett and 
Mei (1982) for a caisson founded directly on the seabed, assuming the 
soil to be a poroelastic half-space. These assumptions limit the 
range of application of the model in some practical applications. 
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Therefore, the objective of this paper is to develop an analytical 
model to estimate foundation stresses, porewater pressure, and struc- 
ture motions for a wave-loaded caisson founded on a rubblemound bed- 
ding layer overlying a soil of finite depth. 

2.  Formulation of the Model 

The wave-soil-caisson interaction problem is depicted in Fig. 1, 
in which h is the still water depth, d is the thickness of the soil 
skeleton, b is the thickness of the rubble bedding layer, 2c' is the 
width of the caisson; and 2c is the width of the mound foundation on 
the mudline through which the displacement repsonse of the caisson 
completely transfers to the soil skeleton. 2c is approximated employ- 
ing a 2V:1H slope (Bowles, 1982) and is termed the effective width of 
the caisson base. 

Wave 

Impermeable Rigid Bed 

Figure 1.  Definition sketch for the coordinate system and wave-soil- 
caisson system. 

The development of the analytical model necessitates a number of 
assumptions.  Among these are: 

1. This is a two-dimensional problem. 

2. The water depth is constant and small amplitude wave theory 
is applicable. 

3. The soil and wave responses are decoupled. 

4. A rigid caisson is founded on a rubble bedding layer which 
is considered to be hydraulically permeable and mechanically 
stiff compared with the underlying soil. 

There is no slip between the caisson and the rubble bedding 
layer. Caisson displacements are completely transferred to 
the seabed through the rubble bedding layer. 
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6. The soil stratum is assumed to be linearly poroelastic, iso- 
tropic, and is confined by a horizontal mudline above and a 
horizontal impermeable, rigid bed below. 

Governing Equation 

Biot considation theory (Biot, 1941) is applicable to a shift 
saturated poroelastic medium. It has been successfully employed to 
model a variety of soil-wave interaction phenomena (Yamamoto et al., 
1978; McDougal et al., 1981; and Mei and Foda, 1981). The Biot 
equations couple the motions of fluid and solid phases. This coupling 
increases the mathematical difficulty. Mei and Foda (1981) developed 
a boundary layer approximation which decouples the pore pressure and 
solid motion. Near the mudline there exists a boundary layer in which 
drainage is relatively unimpeded and there is significant relative 
motion between the fluid and the solid. Farther from the mudline 
there is little drainage so the fluid and solid tend to move in 
phase. This is termed the outer region problem, which can be reduced 
to solving a classical elastostatic problem. However, the boundary 
conditions on the mudline are not satisfied. Hence, corrections are 
made according to the boundary layer solutions so that the boundary 
conditions on the mudline are satisfied. 

The governing equations for the outer region and boundary layer 
problems have been developed by Mei and Foda (1981). Their results 
are summarized in the following. 

Outer Region Problem - The governing equations for the outer 
region problem were derived from the equations of momentum. ()° 
denotes a parameter in the outer region problem. For sandy sea beds 
the equations of momentum for the solid and fluid yields 

3x. 
J 

(1) 

where t' . is the effective stress, p is the porewater pressure, &.. 
is the Kronecker delta, and x. is the axis in the Cartesian coordi- 
nates system.  Introducing the total stress x       to (1) yields 

3x° 

3^=° (2) 
J 

For convenience, lengths and displacements are scaled by the 
effective caisson half-width, c, and stresses and pressures are scaled 
by the mudline pressure amplitude due to the free surface propagating 
waves, PQ. The dimensionless variables will be denoted by upper case 
letters. 

Applying Hook's law to (2) yields the governing equations for the 
outer region problem. 
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V D    +T^Jix ^+ 3Y-J   =0 (3a) 

V V    + 1=2^ 3Y ^3X" + W~J   " ° (3b) 

placements, respectively, v is Poisson's ratio, and X and Y are the 
dimensionless horizontal and vertical axes in the Cartesian coordinate 
system, respectively. 

First the displacements are determined and then stresses in the 
soil skeleton may be obtained by applying Hook's law to the displace- 
ment solutions. The porewater pressure in the outer region is related 
to the total stresses by 

T° + T° 
V 2 (l+mo) ^' 

in which 

8' n G 
mo=-I^ <5) 

and is a parameter indicating the relative stiffness between the solid 
and pore fluid. In (5) 6' is the combined air-water compressibility, 
n is the porosity, and G is the shear modulus. 

Boundary Layer Correction - The governing equation for the bound- 
ary layer problem was derived from the equation of momentum and the 
storage equation. Again, () denotes a parameter in the boundary 
layer. The porewater pressure P in the boundary layer is governed by 
the one-dimensional Terzaghi consolidation equation 

*£--&- (6) 
3Tb  3(YV (6> 

in which T is dimensionless time scaled by the wave frequency and Y 
is the vertical coordinate and scaled by the boundary layer thickness 
6. 

The boundary layer correction is summarized as 

pb 

T,b ; \ _v_ 
xx I _     ) 1-v I      pb                                (y) 

T,b [ ] 1 
yy 

Tb | 1  o xy ' > 



2318 COASTAL ENGINEERING -1986 

in which T'  and T'  are the effective dimensionless horizontal and 
xx    vy b 

vertical normal stresses, respectively, and T  is the dimensionless 
shear stress.  No shear stress correction is required in the boundary 
layer. 

The ratio of the boundary layer thickness and the effective cais- 
son half-width is denoted by 

(8) 

in which 

*-/ELfB'n  i *  1-2v T1/2 f<» 6 " /— ^ no + GKT^J' (9) 

where k' is the intrinsic permeability and a is the wave frequency. 
The displacement components for the boundary layer correction are at 
most of order e and can be neglected. 

Boundary Conditions 

The boundary conditions for the wave-soil-caisson problem are: 

1. Along the exposed portion of the mudline, the wave pressure 
and the total normal stress are continuous and the shear 
stress is negligible (McDougal et al., 1981). 

2. Under the structure, the displacements are continuous at the 
caisson-soil interface. 

3. Along the entire mudline, the wave-induced pore pressure is 
continuous. 

4. The soil overlies a rigid bed at which no-slip and no normal 
fluid flow conditions are imposed. 

These boundary conditions are summarized in Fig. 2. 

Outer Region Problem - The soil displacement and the caisson 
motion are coupled. The wave forces along the exposed portion of the 
mudline induce soil stresses and displacements underneath the cais- 
son. The wave forces on the caisson induce caisson motions which 
result in stresses and displacements in the soil away from the cais- 
son. Linearity allows these two effects to be decoupled into scatter- 
ing and radiation problems. In the scattering problem, the caisson is 
assumed to be fixed and the soil response is completely driven by the 
wave pressure on the mudline. The forces on the caisson determined in 
the scattering problem are applied on the caisson in the radiation 
problem. These forces result in caisson motion on an otherwise static 
seabed.  The sum of these two components, the scattering problem and 
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Figure 2.  Boundary conditions for the wave-soil-caisson system 

the radiation problem, yields the total response.  This technique is 
illustrated in Fig, 3. 

WAVE-SOIL-CAISSON PROBLEM 

SCATTERING PROBLEM 

PROBLEM (A) 

(CONTACT APPROXIMATION) 

PROBLEM (B) 

BOUNDARY LAYER PROBLEM 

(CONTACT APPROXIMATION) 

SURGE  HEAVE  PITCH 

Figure 3.  Decomposition of the wave-soil-caisson problem 
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The Scattering Problem - For the scattering problem the caisson 
is fixed and the mudline boundary conditions are 

T° (X,0) =0 ; 0 < |x| < oo (10a) 

T° (X,0) = -P (X)e~iat ; 1 < Ixl < » (10b) yy        w 'II 

U°(X,0)  =0 ; |x| < 1 (10c) 

V°(X,0)  =0 ; |x| < 1 (lOd) 

This results in a mixed boundary-value problem. To solve this prob- 
lem, a sequence of two solutions is sought: one which satisfies the 
stress boundary conditions (problem (a)) and then a second solution 
which satisfies the displacement boundary conditions (problem (b). 

The boundary conditions for problem (a) and (b) are shown in 
Fig. 4. The displacements along the mudline, aU°(X,0) and aV°(X,0), 
from the solution for the problem (a) are modified to provide the 
boundary conditions for problem (b). The first modification is that 
under the structure the displacements are set equal to zero. The 
second modification is based on the solution to the contact problem on 
a thin elastic layer developed by Alblas and Kuipers (1969). This 
solution provides appropriate displacements adjacent to the structure. 
Details are presented in Appendix I. The solution to problem (b) 
satisfies both stress and displacement conditions along the mudline. 
Thus, it is the solution for the scattering problem. 

The Radiation Problem - The radiation problem is a moving caisson 
on an otherwise static soil. The response of the soil must satisfy 
the caission displacement conditions on the mudline. The caisson 
responds to both wave and soil loadings from the scattering problem 
and a restoring force in the radiation problem. The scattering loads 
are known but the motion is still unknown. A dynamic boundary condi- 
tion must be prescribed to solve for the unknown caisson motion. This 
condition yields the amplitude of the caisson motion. linearity 
allows the soil response to be decomposed into three problems corre- 
sponding to each of the three degrees of freedom of caisson motion. 
The caisson is assumed to be rigid and the effects of the structural 
damping in the caisson are assumed to be negligible compared with the 
soil. 

Underneath the caisson the motions are specified while along the 
exposed portion of the mudline zero stress conditions apply. The 
boundary conditions for the radiation problem are depicted in Fig. 
5. The respective boundary conditions along the mudline for the 
problems of surge, heave, and pitch may be defined by appropriate dis- 
placement and stress conditons. Displacement conditions over the en- 
tire upper boundary may be written by introducing D,, vf, and v,, 
which account for the unknown displacements along the exposed portion 
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problem (b) 

Figure 4.  Boundary conditions for the scattering problem 

of the mudline. Stress conditions for each degree of freedom of the 
caisson motion are also reasonably approximated as given by Alblas and 
Kuipers (1969 and 1970). 

(1) surge 

T°y(X,0) =0 ; 0 < |x| < »      (11a) 

U°(X,0)  = Uc + h° ; 0 < |x| < »      (lib) 

(2) heave 

T°y(X,0) =0 ; 0 < |x| < »      (12a) 

V°(X,0)  = Vc + 
2V° ; 0 < |x| < -      (12b) 
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Figure 5.  Boundary conditions for the radiation problem 

(3) pitch 

; 0 < Ixl < ~     (13a) Tu (X,0) = 0 
xy 

V°(X,0)  = -a X + JV, ; 0 < |x| < (13b) 

These are no longer mixed-type boundary conditions, and .the bpundary- 
yalue problem can easily be solved. The displacements  Uf> v., and 
Vf can be evaluated by employing the thin soil layer contact problem 
solution technique presented in Appendix I. 

'»? - »= 
y 1, - tanhf 2 /Tl-v)(-l-X)   ) 

TtD 

1 - tanhf2 /(l-v)(X-l)  ) 
ITD y 

< X <  -1 

;   1 < X < <° 

(Ha) 

2'? 

l-tanh( 2 / A (-1-X)" 
TtD V 

l-tanh(2 / A (X-l)   ) 
TtD y 

<  X <   -1 

(14b) 

;  1 < X < 
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3„o 
f   c) 

V l-tanh{2 / A (-1-X) (1 + i 3^(0))} ; -» < X < -1 
TTD 

(He) 

.l-tanh{2 / A (X-l) (1 + i S^_(0)}  ; 1 < X < 
irD 

2 / A (X- 

In (lib), (12b), and (13b), Uc, Vf and a are the displacements 
of the caisson in surge, heave, ana pitch, respectively. Positive ac 
is defined as counterclockwise. These displacements are unknown, but 
may be determined from the dynamic boundary conditions on the soil- 
caisson interface, i.e., the equation of motion for the caission. 

Lwl 

lw3 

lsl 

Ls3 

Lrl 

fw2/ + \fs2/ + \fr2 

Lr3 

(15) 

where m and I are the mass and mass moment of inertia of the caisson, m.  ..      .. ' 
respectively, Uc, Vc, and ac are the accelerations of surge, heave, 
and pitch of caisson motion, f •,   and 

:s3 
are the wave and soil loads 

on the caisson determined in the scattering problem, and f . are the 
restoring forces on the caisson. The soil loads are obtained^ by inte- 
grating the stresses along the caisson-seabed interface. 

The Boundary Layer Correction - Along the mudline, the summation 
of the pressure from the boundary correction and outer region solution 
is equal to the wave-induced porewater pressure. Along the rigid bed 
underlying the soil, the normal derivative of the pore pressure must 
be zero, i.e., 

at Y = 0 P° + Pb = n P (X)      ; 0 < \x\   <  » (16a) 
o  w II 

at Y = D 3(P° + Pb) 
8Y 

= 0 ; 0 < |x| < <» (16b) 

Solution to the Model 

The poroelastic layer occupies the strip space -«°<X<<»; 0< Y 
< D. A Fourier transform is applied with respect to X in Eq. (3). It 
follows that the general solution for the outer region problem is in 
the form of Fourier transform 
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U°(s,Y)   = a.ch(sY)  + a2sh(sY)  + a3Ych(sY)  + a^YsMsY) (17a) 

V°(s,Y)   = -i{aish(sY)   + a2ch(sY)  +  a3[Ysh(sY)   - ~•  ch(sY)] 

+ a  [Ych(sY)   ~^~ sh(sY)]} (17b) 

in which s is a Fourier transform parameter and functions ch and sh 
are abbreviations of cosh and sinh. The coefficients a, , a?, a,, and 
a^ may be quantified by applying boundary conditions for the 
scattering and radiation problems, respectively. The inverse Fourier 
transform of the solution can be evaluated with a fast Fourier trans- 
form. 

For simple harmonic waves, the solution for the boundary layer 
problem can also be easily solved. 

,rl-i D-Yn coshL-^- —] 

PbM[noPw(X)-P°|v=0]     " 
COSh(—- -) 

/2 e 

sinh(— J 
1+i  3P° I    {2    e i  -iTb ,,„. 

- — E8Y-|Y=D   ,fl-l DJ 
e (18) 

/2 cosh(—- j 
• 2 e 

The superimposition of the solutions for the scattering problem, 
radiation problem, and boundary layer problem yields the total 
solution to the original problem. Since the response of the soil to 
waves and caisson motions is not readily apparent from the analytical 
solution, a numerical example will be presented to examine the solu- 
tion behavior. For this examination the conditions given in Table 1 
are assumed. 

Contours of the soil response are presented in Fig. 6. These 
plots are for the wave crest at the face of the caisson (x = -c). 
Figures 6(a) and (b) show the horizontal and vertical displacements. 
The horizontal displacement is rather symmetrical with respect to the 
caisson center line. The surge motion of the caisson tends to domi- 
nate this displacement. The vertical displacement is antisymmetrical 
with respect to the caisson center line because the pitch motion is 
dominant in this displacement. However, the wave-induced vertical 
displacement is also significant near the caisson toe. Figures 6(c) 
through (e) show the shear stress, effective horizontal and vertical 
normal stresses, respectively. High stress concentrations occur at 
the caisson toe and heel. Both the shear stress and the effective 
horizontal normal stress decay with the depth much faster than the 
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Table 1.  Wave, caisson, and soil conditions. 

Wave Period 
Wave Height 
Water Depth 
Rubblemound Thickness 
c' 
m 
Xm 
d 
v 
G 

I? 

10 sec 
6.1 m 
12.2 m 
1.5 m 
6.4 m 
64,240 kg 
6,397,800 kg-m2 

7.2 m (dimensionless depth 
0.15 
19,640 KN/V 
0.3 
1.03 x  10-® m4/sec/N 
4.53 x  10~10 m2/N 

1.0) 

effective vertical normal stress. Figure 6(f) shows the porewater 
pressure. Due to the influence of the impermeable rigid bed on the 
porewater pressure, higher porewater pressures are developed near the 
impermeable underlying bed rather than near the mudline. 

4. Conclusions 

1. A linear, two-dimensional analytical model for wave-soil 
caisson interaction has been developed. The caisson is 
founded on a rubble bedding layer overlying linearly 
poroelastic soil of finite depth. 

2. Soil displacements, stresses, and porewater pressure as well 
as caisson motion are predicted. 

3. Two approximations are employed: a boundary layer approxi- 
mation and a contact solution approximation for a thin elas- 
tic layer. 

4. The pitch motion of the caisson develops the largest soil 
response while heave is the least significant. 

5. The caisson motion induces much larger displacements, 
stresses, and porewater pressure in the soil than the wave 
alone. This indicates that a static analysis may signifi- 
cantly underestimate stresses. 
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Appendix I. Displacement Boundaries along the Exposed Mudline 

A contact solution approximation has been developed for a rectan- 
gular block on a thin elastic layer by Alblas and Kuipers (1969). The 
boundary conditions along the upper boundary of the elastic material 
are of the mixed type. The displacement condition along the block 
elastic-layer interface is defined while the stress along the exposed 
portion of the upper surface are known. Under the assumption of a 
thin elastic layer, Alblas and Kuipers (1969) developed an approximate 
solution for the displacement of the elastic layer surface adjacent to 
the block. 

heave 

V^(X) 

pitch 

Vjl-2/^gii ] ; 0 < X-l « 1   (1.1) 

V'(X) = a {1-2/ A(X~1) [1 + i S'(0)]V  ; 0 < X-l « 1   (1.2) 

9 A 

where A = 2(l-v) /(l-2v) and S^_(0) is a function dependent on 
Poisson's ratio and the layer depth (Alblas and Kuipers, 1970). These 
solutions are only valid near the structure. Hence, a tanh function 
is introduced to modify (1.1) and (1.2) to yield approximate solutions 
which approach the original solutions near the structure and approach 
the undeformed upper surface at large distances. The tanh function 
also satisfies the no stress condition along the exposed portion of 
the elastic layer. 

heave 

V2(X)   =Vc{l-tanh[2/ M~1]} ;1<X<~ (1.3) 

pitch 

V3(X) = ac[l-tanh{2/ 
A(X~•-- [l+iSl(0) ]} ]   ; 1 < X < <»   (1.4) 

Alblas and Kuipers (1969) did not develop a solution for the 
surge of the block motion when the block is subjected to a horizontal 
load. Therefore, an approximate solutions for the horizontal dis- 
placement is developed from the solution for the heave, (1.1) 

U'X(X) = Ujl-2/ (1 V^X 1} ] ; 0 < X-l « 1     (1.5) 
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Introducing the  tanh function yields 

Jl(X)   - ujl-tanh( 2/11^2^2 )] ;   1  <  X < - (1.6) 
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