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ABSTRACT 

A finite element model for combined refraction-diffraction problems of 
linear water waves has been extended to include the effect of various 
dissipative mechanisms on wave excitation response in harbours of arbi- 
trary shape and variable depth. Especially, the effects of bottom fric- 
tion, partial absorption along the harbour, contours, and transmission 
through permeable breakwaters have been considered. Although, within the 
mild slope approximation, the model is valid for arbitrary wave lengths, 
in this paper its effectiveness for harbour design applications is de- 
monstrated for long wave induced resonance phenomena. For this purpose a 
realistic harbour geometry has been selected. A hydraulic scale-model of 
this harbour enabled experimental verification of the computational 
results. 

1.  INTRODUCTION 

The propagation of linear time-harmonic waves in areas of variable depth 
can be described by the mild-slope equation, as derived by Berkhoff 
(1972). He solved the equation using a hybrid finite element method, re- 
presenting the solution in the exterior by a continuous distribution of 
sources along the radiating boundary. A more elegant approach, resulting 
in symmetric matrices, was formulated by Chen and Mei (1974). They used 
a series expansion in terms of Hankel functions for the radiating waves 
and included the unknown expansion coefficients in a variational formu- 
lation. 

After the introduction of a partially reflective boundary condition, 
Berkhoff (1976) could use his model to compute the wave disturbance in 
harbours with arbitrary reflective properties. As all absorbing condi- 
tions for numerical models, this condition cannot maintain the rate of 
energy dissipation for waves of different angles of incidence. Behrendt 
(1985) showed how to approximate the perfect boundary condition to 
higher order. 

Booij (1981) suggested a modification of the mild-slope equation to ac- 
count for the effect of bottom friction by adding a dissipative term. 
Dingemans (1985) considered the effect of bottom dissipation for shallow 
water conditions and shows the analogy between the obtained equations 
and the modified mild-slope equation. Dalrymple et al. (1984) have given 
several forms of the extra dissipation term for different energy dissi- 
pation mechanisms. Liu et al. (1986) showed that the extra term even can 
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be used to estimate the effects of reflective and transmissive breakwa- 
ters in numerical models based on the parabolic approximation of the 
mild-slope equation. On the other hand, Behrendt (1985) included the ef- 
fect of bottom friction in the original mild-slope equation by formula- 
ting the energy loss as a flux of complex energy through the bottom. 

Especially for very long waves the energy loss at the harbour entrance 
due to flow separation may be important. The modelling of a quadratic 
flow separation term can be incorporated in a numerical model by amen- 
ding the matching conditions for pressure and normal velocity at the 
harbour entrance, see e.g. Berger (1986), who considered diffraction 
only. 

Dissipation mechanisms may have a considerable influence on the wave 
disturbance in harbours, either for short period wind waves and swell, 
or for long period waves (tsunamis etc.), or both. For long waves resul- 
ting in harbour resonances the peak amplitudes at resonance are influ- 
enced by a number of mechanisms, see e.g. Mel (1983): 
- radiation damping, i.e. energy escaping seaward from the harbour en- 

trance, 
- partial absorption along harbour boundaries due to wave breaking and 

frictional losses, including internal losses in permeable breakwa- 
ters, 

- bottom friction, 
- flow separation near the harbour entrance, 
- finite-amplitude effects of energy transfer into higher harmonics. 

Apart from the finite-amplitude effects, all these mechanisms can be ac- 
counted for in a newly developed numerical model solving the mild-slope 
equation. When finite-amplitude effects are expected to be the dominant 
mechanism, a model based on the Boussinesq equations for shallow water 
conditions could be applied, see e.g. Abbott et al. (1978). 

The newly developed model solves the modified mild-slope equation ac- 
counting for bottom friction, and is equipped with a variety of options 
for appropriate boundary conditions, including one for combined reflec- 
tion and transmission. To illustrate the effectiveness of the model for 
harbour design, a series of long wave computations is discussed for one 
specific realistic harbour geometry (see Fig. 1). Part of these compu- 
tations have been compared with hydraulic scale-model experiments. 

MODEL SCSLE 

Figure 1 Harbour geometry Figure 2 Finite-element grid no. 1 
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2.  MODIFIED MILD SLOPE EQUATION 

The mild-slope equation as derived by Berkhoff (1972, 1976) is a two- 
dimensional depth-integrated elliptic wave equation governing the propa- 
gation of linear time-harmonic waves in areas of moderate slope. The mo- 
dified equation including the dissipation term as suggested by Booij 
(1981) reads 

V.(cc V*) + cc (k2 + iky)* = 0. (1) 
g      g 

where Kx,y) denotes the two-dimensional velocity potential in the hori- 
zontal plane, related to the total potential *(x,y,z,t) according to 

*/     -\  A/  >. cosh k(h+z) -iut ,,.. $(x>y,z,t) = »(,,y)  cosh kh  e   . (2) 

In Eq. 1, c, Cg and k represent the phase velocity, the group velocity 
and the wave number, respectively, which can be evaluated from the li- 
near dispersion relation. The funtlon y is defined as W/c„, where W is 
the rate of energy dissipation per unit wave energy intensity. 

In order to derive Eq. 1, including the effect of energy dissipation due 
to bottom friction, the principle of virtual work may be employed. Noti- 
ce in this respect that the original mild-slope equation was obtained by 
application of a variational principle, and that variational principles 
are especially suited for conservative systems. However, this approach 
would be rather intricate and will not be followed here. Instead, Eq. 1 
will be made plausible by showing the analogy to the result for shallow 
water waves. For the case of shallow water, the vertically integrated 
continuity equation and the horizontal momentum equation read in linea- 
rized form 

5+V.(hu)=0  ,  ^+gVr,+^=0, (3) 

where T is the bottom shear stress vector, for which the friction law 

+  X -  l+ '* (4) 

is taken, where u^ is the wave velocity just outside the bottom boundary 
layer. With Uj, = u/cosh kh, according to linear theory, the term x/ph 
is linearized as wS, so as to obtain the same amount of dissipation over 
one wave period. This results in 

4f•    1 
w=_w  1  u (5) 

3ith (cosh kh)^ 
where fw is the wave friction coefficient, and ue represents the effec- 
tive amplitude of the horizontal velocity 

u = *t IT(iU)3/2dt / JT(3.3)dt . (6) e    o o 
The product (u.u) can be written as 

u.u = p + qcos(2wt - a), (7) 

where p and q are functions of the derivatives of the real and imaginary 
parts of the velocity potential <|>(x,y) with respect to x and y. Substi- 
tuting Eq. 7 into Eq. 6, one obtains after some algebraic manipulation 
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ue = /p?q {E(m) -1(1 - J-)K(m)}, 23_ 
p+q (8) 

in which K(m) and E(m) denote the complete elliptic integrals of the 
first and second kind, respectively, and m is the elliptic parameter. 
Notice that for p=q the horizontal velocity components are in phase, and 
the effective velocity amplitude equals the amplitude of the unidirec- 
tional velocity u. Upon combination of the continuity and the momentum 
equation, and introducing the velocity potential, one obtains for time- 
harmonic motion 

V.(ghV4>) + gh(k2 + —)<t> = 0 . (9) 
/gh 

Because of the close resemblance between this equation and the unmodi- 
fied mild-slope equation for shallow water, where c = c„ = /gh, it seems 
reasonable to model wave dissipation in the mild-slope equation accor- 
ding to Eq. 1. 

laminar regime/ 

\ 

'~~-^_ 

7—-T""-100 

smooth turbulent regime    /   ""^—-—^Z~ 

103 10' 

Figure 3 Wave friction coefficient fw for different boundary layer 
regimes, see Jonsson (1978) 

To determine the wave friction coefficient fw, as defined in Eq. 4, the 
relations derived by Jonsson (e.g. 1978) have been used. Jonsson distin- 
guishes three relations for the different types of boundary layers (see 
Fig. 3): 

- laminar regime: 
w.l 

2 (RE) 
•0.5 

-0.2 

- rough-turbulent regime: 

smooth-turbulent regime:  f   =0.09 (RE) 
w,s 

f   - 0.0605/(log ^) . 
N 

Moreover, the friction coefficient has a maximum value: 

f < 0.30 . 
w 

In these relations the amplitude Reynolds number is defined as 

(10) 

(11) 

(12) 

(13) 

RE = 
%  ab 

(14) 
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where v denotes the kinematic viscosity, and S. represents the amplitude 
of the particle excursion at the bed. The thickness of the rough-turbu- 
lent boundary layer, 8, can be determined from 

6 = 0.072 (S.k)0-25, (15) 
D N 

where kjj is the well-known Nikuradse roughness parameter. Although the 
above equations have been derived for unidirectional oscillating flow 
conditons, uj, can be approximated by ue/cosh(kh) and ue/[wcosh(kh)], 
respectively (see Eq. 6). In nature the boundary layer will always be 
rough-turbulent. However, as all regimes have been implemented in the 
numerical model, small-scale hydraulic model conditions can be handled 
too. This is especially useful for verification studies. 

Eq. 1 is solved by means of standard finite element techniques, using 
triangular elements with linear interpolation functions. The non-linea- 
rity, as introduced by the dissipation term, is treated in a straight- 
forward iterative way. If the bottom friction is a predominant dissipa- 
tion factor, which can be the case for harbour resonance problems, an 
average number of 3 to 5 iterations appears to be adequate to obtain re- 
liable results. However, if the bottom friction is only a secondary dls- 
sipative effect, as for most problems where short wind waves are invol- 
ved, 2 iterations are already sufficient in most cases. 

3.  BOUNDARY CONDITIONS 

Different types of boundary conditions have been implemented in the fi- 
nite element model, viz. 

- radiation conditions, 
- a wave-maker condition, 

a condition for partial reflection, and 
- a condition for combined partial reflection and transmission. 

Radiation damping can be treated in two ways. Both methods match the fi- 
nite element region and the outer region, where constant depth is assu- 
med by requiring the continuity of pressure and normal velocity. The 
first method, applied by Berkhoff (1972, 1976), is to represent the so- 
lution in the outer region by a continuous distribution of sources along 
the open boundary: 

<t>s = / u(M) |f H*(kr) ds , (16) 
A 

where it's is the velocity potential of the scattered waves, A is the open 
boundary, and Hg(kr) denotes the Hankel function of the first kind and 
zero'th order. The unknown source strength (i(M) at point M must be sol- 
ved along with the inner region by requiring the two matching conditi- 
ons. Chen and Mei (1974) succeeded to incorparate the matching conditi- 
ons as natural boundary conditions in a variational principle by repre- 
senting the velocity potential of the scattered waves as a series expan- 
sion of Hankel functions, 

<t> = I    Hx(kr) (a cos n0 + p sin n0) , (17) 
s   „ n      n        n n=0 
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where r and 0 are polar co-ordinates. Again, the coefficients o^ and pn 

are determined by matching with the solution in the inner region. Both 
methods have been implemented In the numerical model. In general, the 
second method is to be recommended, as it results in a symmetric matrix. 
However, as the region to be modelled will generally be larger for this 
method, sometimes the source method may be preferable, especially for 
harbours and bays with wide openings. 

To be able to compare with hydraulic model experiments, a wave-maker 
condition is very useful. The implemented condition reads 

at + lk* " ° (18) 

where $ is the velocity potential of the generated waves, and n is the 
direction normal to the wave paddle. As can be simply derived, Kq. 18 
implies a 100% reflective paddle. 

Partially reflective harbour contours are modelled with the well-known 
equation (see e.g. Berkhoff, 1976) 

&-  ik(l-r)4 (19) 

This condition will work for all kinds of incident wave systems in re- 
gions of variable depth, and for curved boundaries. However, to relate 
the actual reflection coefficient R to the complex coefficient r, a 
long-crested wave incident on a straight boundary in constant water 
depth is assumed, i.e. 

^e 
i(kxcosa kysina) i(kxcosa + kysina + p) 

+ R<p.e , (20) 

where p denotes the phase shift at the boundary. Subsitution in Eq. 19 
yields 

Re ip 
sina 1 + r 
sina + 1 - r ' 

showing the dependence of R on the angle of incidence a. 

(21) 

incident   wave reflected wave 

transmitted wave 

Figure 4 Definition sketch for a transmitting boundary 

Analogously to Eq. 19 a boundary condition for combined reflection and 
transmission has been developed, assuming equal reflection and transmis- 
sion characteristics in both directions, i.e. symmetrical constructions. 
The velocity potentials on either side of the transmitting boundary are 
denoted as <|> and <|J, where 

*o  yt <l> = <P0 + <l>t • (22,23) 
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The subscript t refers to that part of the local potential which origi- 
nates from transmission, see Fig. 4 for a reference sketch. The general 
form of the boundary condition consists of the following set of four 
equations 

<k     - s* , A    =  s* (24,25) to to *     ' 

a* a<t> oij) a<i> 

a5~ = _t aF"   '       an~ = _t ai" » (26,27) 

where s and t are complex coefficients. Eq. 19 for §0 and a similar one 
for <\>0, Eqs. 22, 23 and similar ones for the normal derivatives of the 
potential, and Eqs. 24 to 27 constitute a set of 10 equations for 12 un- 
knowns. Elimination yields the following two equations in terms of the 
potentials <(> and <|i, and their respective normal derivatives: 

(l-s2)|£ - ik(l-r){(l + st)* - (s + t)c|,} = 0 (28) 

(l-s2)|£- ik(l-r){(l + st)* - (s + t)*} = 0 . (29) 

Across the boundary the velocity potential jumps discontinuously, which 
can be numerically treated by means of line elements with double nodes. 
To achieve full reflection for r = 1, as well as non-transmission for 
t = 0, the coefficient s has been taken to be 

s = (l-r)t . (30) 

Again assuming long-crested waves in constant water depth, the velocity 
potential on either side of the boundary may be described by Eq. 20 
along with 

* = T^e1(kX C°SP "ky s^ + ^\ (31) 

where T denotes the phase shift of the transmitted wave over the bar- 
rier, see also Fig. 4 for the reference system. For p = a, substitution 
of Eqs. 20 and 31 in Eqs. 28 to 30 yields 

ip  -t2(l-r)2(l-sina)(l+sin<x) + (1-r+sina) (1-r-sincc) 
Re  = —rr~——5— -5 — -5  and      (32) 

+t2(l-r)2(l-sina)2       - (1-r+sina)2 

ix        -2t(l-r)(2-r)sina 
Te  = —5 5—^ • • ,• 5- • (33) 

+t2(l-r)2(l-sina)2 - (1-r+sina)2 ^ ' 
As an example, for t = 1 and p = t = 0 these equations result in 

R + T = 1 , (34) 

which implies a rate of energy dissipation 

D = 1 - R2 - T2. (35) 

Eq. 34 has been derived by Madsen and White (1975) for a permeable 
breakwater and long waves. Fig. 5 shows the dependency of R and T on the 
angle of incidence, also for t = 1 and p = t = 0 . For normally inci- 
dent waves Eqs. 32 and 33 reduce to 

„ *-P   r        ,    m IT  2t(l-r) ,,, --,. Re  = -J2J-     and    Te =  —)r—*- • (36,37) 
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Figure 5 Reflection (R) and transmission (T) coefficients as functions 
of the angle of incidence (a); t = 1, p = T = 0 

Apart from transmission through permeable breakwaters, the transmission 
conditions might be also applied to approximate the effect of energy 
loss due to flow separation at the harbour entrance, and at protruding 
structures within the harbour. The usual formulation for the energy loss 
at the harbour entrance is 

f 
T) 2g 

(38) 

where r\ and T| denote the free-surface displacements on either side of 
the constriction, and u is the velocity component normal to the 
entrance. In the equation the apparent inertia term has been neglected, 
which is acceptable for long waves. Unfortunately, direct empirical 
knowledge of the friction coefficient f£ is hardly available, but gene- 
rally fe is assumed to be < 1.5. 

4.  SOME APPLICATIONS FOR A COMPLEX HARBOUR GEOMETRY 

The model has been satisfactorily verified for a variety of simple con- 
figurations, permitting a comparison with analytical solutions. The ver- 
ification programme included the classical Homma island surrounded by a 
parabolic shoal, a rectangular harbour with constant depth, and obli- 
quely incident waves over a linearly sloping bottom with constant depth 
at both sides. After these verifications the model has been used in nor- 
mal laboratory advice practice, mostly to study harbour responses due to 
wind waves and swell. The model has recently been implemented on a CRAY- 
XMP supercomputer. Taking full advantage of the vector-processor, the 
sytem of equations is solved quite efficiently. Until now, the largest 
system which has been solved, referred to a grid of 37,000 nodal points 
for a 10 second wave computation without bottom dissipation in an area 
of about 10 km2. The CPU time to execute this computation was about 2 
minutes. 

Hereafter, some results of further research will be shown to illustrate 
the effectiveness of the numerical model to solve harbour resonance pro- 
blems. It is well known that harbour oscillations induced by long waves 
may result in considerable hazards for e.g. moored ships. Although a va- 
riety of forcings can be responsible for these oscillations, the most 
studied forcing is due to incident free long waves (tsumamis etc.). Un- 
til now, most numerical models mainly predict the natural frequencies of 
the harbour and the corresponding oscillation modes. However, there is 
an increasing need for realistic peak amplitudes at resonance, especial- 
ly for numerical methods to determine the dynamic behaviour of moored 
vessels inside a harbour, see e.g. Mynett et al. (1985). To examine 
whether this model could fulfil this need, a series of computations was 
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performed for a realistic harbour geometry (see Fig. 1). The choice of 
this specific lay-out enables the comparison with experiments in a phy- 
sical model having a length scale of 1:80. The harbour area of about 
1 km2 is divided into two parts by an inner breakwater. The main part 
has been dredged to -9.0 m; the shallow part accomodates fishing-boats 
etc. All computations and experiments have been carried out for a water 
level of Chart Datum + 1.25 m. For the computations three different 
finite element grids have been used, viz. 
- grid no. 1, including the harbour area only, and having scale-model 

dimensions (see Fig. 2), 
- grid no. 2, reproducing the scale-model (see Fig. 9), and 
- grid no. 3, reproducing the harbour and surroundings at natural scale 

(see Fig. 13). 

0.00       0.02       0.04       0.06       0.08 

VARIABLE WATER DEPTH 

0.10  0.12  0.14  0.16 
 e»- WAVE FREOUENCr 

Figure 6 Harbour response at position B for constant and variable 
depth; radiation damping only, grid no.l 

Grid no. 1 was used for some first computations on the effects of the 
variable depth and the (laminar) bottom friction. The direction of the 
incident waves was 30° from North (see Fig. 1) and the harbour contours 
were 100% reflective. Fig. 6 shows for position B (see Fig. 1), that, 
even for a harbour with constant water depth in its main part, a combi- 
ned refraction-diffraction model is essential to predict natural fre- 
quencies. For the same position, Fig. 7 illustrates the effect of bottom 
friction, using a Nikuradse roughness of kjj = 0.5 mm, which represents 
the cemented bottom of a scale model. Even for a very moderate height of 
the incident waves, H = 1.5 mm, the reduction due to bottom friction can 
be quite considerable, especially for sharp resonance peaks. For exam- 
ple, the peak at 0.055 Hz, representing a mode with half a wave length 
between the inner breakwater and the eastern one, is reduced to less 
than 20% at point B. 

A sketch of the lay-out of the physical model is shown in Fig. 8. The 
long wave experiments have been performed for one wave direction, for 
which situation the position of the wave generator and two guiding walls 
have been indicated. Monochromatic waves with a wave height of 3 mm were 
generated for a series of wave periods between 10 and 40 seconds, exclu- 
ding the occurrence of wave breaking. Ten wave height gauges were used, 
including one in the harbour mouth. The measured signals have been 
Fourier analysed to obtain the wave amplitude in the fundamental fre- 
quency. All breakwaters had a 1:2 slope of rough stones and were fully 
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Figure 7 The effect of frictional damping on the harbour response at 
position B, grid no. 1 

impermeable. The boundaries at the south end of the harbour were verti- 
cal quays. The finite element grid for the verification study is shown 
in Fig. 9. The main reason to reproduce the area around the access chan- 
nel was to be certain of correct wave directions at the harbour mouth. 
As Fig. 9 shows, the regions behind the guiding walls have not been re- 
produced. The boundaries at the end of the guiding walls have been sup- 
posed to be fully absorbing; all other boundaries were 100% reflective. 
Earlier computations had revealed that only a marginal absorption rate 
in the order of 5% can reduce the harbour response at resonance by more 
than 25%, see also Behrendt (1985). However, such small reductions are 
hardly measurable in a complex harbour model. Another main reason to ex- 
pect lower responses in the scale model beforehand, is that the wave 
generators are not fully reflective, which was assumed in the numerical 
model, see Eq. 18. 

wava qonerotor ^ 
-15 \        ^-^ 

\ \~""5* __        - *T)\ 

modal boundorvV^1 r  // "9 ii 

0   25   5    75   10 m     |_ 

MODEL SCALE 

Figure 8 Lay-out of 1:80 scale 
model 

Figure 9 Finite-element grid no. 2 

Fig. 10 shows representative examples of the comparison between measure- 
ments and computations for two stations. Position A refers to a corner 
in the shallow basin and position C is situated in the harbour entrance, 
see Fig. 1. The lowest graph shows the amplification between both sta- 
tions. Looking at the upper graphs, it is obvious that in general the 
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0.015 

"§ 0.012 

computed responses indeed exceed the measured ones. However, especially 
for two frequencies considerable discrepancies occur, i.e. for f=0.039 
Hz and f=0.066 Hz. As shown in Figs. 11 and 12, these specific frequen- 
cies induce resonance in the outer area, between the wave generator and 
the breakwaters. This distance equals one wave length for f = 0.039 Hz 
and 2.5 wave lengths for f = 0.066 Hz. The discrepancies at these fre- 
quencies may be explained by the fact that the wave generator did not 
reflect the incident wave energy completely, as was assumed in the nume- 
rical model. Nevertheless, this hardly explains the large amplification 
between stations A and C for 0.066 Hz (see Fig. 10). A more thorough 
examination of this frequency revealed that the amplification was very 

sensitive for the position of the 
antinodal line at the harbour en- 
trance. A minor change of this 
position, due to a slightly dif- 
ferent grid in the sharp corner 
between the western breakwater 
and the outer boundary, reduced 
the amplification between sta- 
tions A and C considerably. Apart 
from the discussed frequencies, 
the agreement between measure- 
ments and computations is quite 
satisfactory, especially when 
considering the amplification be- 
tween the harbour entrance and 
positions within the harbour. In 
general, the computations result 
in higher responses at resonance 
frequencies. This may be attribu- 
ted to the following reasons: 
minor absorptions along the boun- 
daries, the energy loss due to 
flow separation at the breakwater 
ends, and finite-amplitude ef- 
fects resulting in energy trans- 
fer to higher harmonics. The 
small shifts in the peak frequen- 
cies are ascribed to non-linear 
effects. 

POSITION A / POSITION C 

0.06    0.08    0.10 
-»• WAVE FREQUENCY 

Fig. 10 Comparison between measured 
and computed harbour respon- 
se at positions A and C; 
H±  = 0.003 m, kN = 0.0005 m 

The third set of computations refers to prototype scale, implying turbu- 
lent boundary layers. The bathymetry in the grid area is shown in Fig. 
13. A constant value of the Nikuradse roughness, kN = 0.04 m, has been 
taken for the entire area. Although less dominant than for the laminar 
case the effect of bottom friction can still be considerable; results 
will be reported elsewhere. The effects of partial reflection and trans- 
mission have been studied for monochromatic waves incident from a direc- 
tion perpendicular to the main breakwater (70 °), with an incident wave 
height H = 0.25 m and wave frequencies up to 0.01 Hz. The boundary con- 
ditions 28 and 29 have been used for all three breakwaters, whereas the 
southern boundaries of the harbour have been assumed to be fully reflec- 
tive for all computations. As an example of the results, the harbour 
response at position A is compared in Fig. 14 for the following three 
breakwater characteristics: 
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Fig. 11 Free surface contours at the 
moment of maximum elevation for 
f = 0.039 Hz; E±  = 0.003 m, 
ku = 0.0005 m 

Fig. 12 Free surface contours 
at the moment of maxi- 
mum elevation for f = 
0.066 Hz; % = 0.003 m; 
kN = 0.0005 m 
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Figure 13 Bathymetry in computational area (grid no.3) 

a) full reflection: R = 1.0, T = 0.0 
b) partial reflection: R - 0.9, T = 0.0 and 
c) partial reflection and transmission: R = 0.9, T = 0.1. 

The constants in Eqs. 28 and 29 have been determined from the relations 
36 and 37 under condition of no phase shift, i.e. p = T = 0. 

A comparison of conditions a) and b), see Fig. 14, shows that a small 
reduction of R results in a considerable reduction of the amplifications 
at resonance. The maximum amplification is seen to be about 2, which 
also holds for other positions within this specific harbour. Although, 
for impermeable breakwaters a reflection coefficient of R - 1.0 is quite 
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Figure 14 The effect of partial reflection and transmission on the 
harbour response at position A, grid no. 3 

realistic for relatively long waves, condition c) is more appropriate 
for permeable breakwaters of the rubble mound type, for which T = 0.1 is 
even a rather low value. As Eq. 35 shows, conditions b) and c) result in 
almost the same energy loss at the boundaries. However, due to transmis- 
sion there is an extra inflow of energy through the breakwaters, here 
primarily through the main breakwater. A comparison of conditions b) and 
c) in Fig. 14 shows a small increase in amplification due to transmis- 
sion for all frequencies. It is noted that for other positions the am- 
plifications of c) can also be less than those of b) for parts of the 
frequency range. The above results suggest that for permeable breakwa- 
ters the energy dissipation within the breakwater is of paramount influ- 
ence on the response characteristics, whille the extra inflow of energy 
is much less important. 

In Fig. 14 the response peak at 0.0246 Hz refers to the Helmholtz mode 
of the inner shallow basin. The small peak at 0.00608 Hz represents an 
oscillation mode of the main basin. This mode is shown in Fig 15 for 
four different conditions, and illustrates again that partially absor- 
bing boundaries may have an enormous effect on peak responses. 

5.  CONCLUSIONS 

A finite element model solving the modified mild-slope equation for 
waves with arbitrary wave length has been applied to study dissipative 
effects on harbour resonance phenomena. The effects of bottom friction, 
partially absorbing boundaries, and also transmission have been consi- 
dered. To model the effect of combined reflection and transmission, a 
new boundary condition has been proposed. The following conclusions have 
been obtained: 
- In harbour design studies, it is essential to include the effect of 

variable depth in the mathematical model to obtain a good prediction 
of the resonance frequencies. 

- Bottom dissipation may be of considerable influence on the harbour 
response at resonance, both for laminar and turbulent flow regimes. 

- Usually, harbour response studies are performed for fully reflective 
harbour contours. It has been shown that a small reduction of reflec- 
tion coefficients may result In a drastic decrease of the harbour 
response at resonance. Such reductions occur in case of permeable 
rubble mound breakwaters. The effect of the additional inflow of wave 
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Figure 15 Free surface contours at the moment of maximum elevation for 
f = 0.00608 Hz; H± = 0.25 m, kN = 0.04 m 
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energy through these breakwaters is found to be less important than the 
effect of energy dissipation within the breakwater. 
- Comparison between measurements in a hydraulic scale model and nume- 

rical computations shows a satisfactory agreement in harbour respon- 
ses. This confirms that, also for long waves, the numerical model is 
an useful tool for engineering design purposes. The agreement might 
be even further improved by inclusion of the effect of flow separa- 
tion in the model. However, for applications it is most essential to 
represent the appropriate boundary conditions correctly. 
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