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2DH COMPUTATION OF TRANSIENT SEA BED EVOLUTIONS 

Huib J. de Vriend* 

ABSTRACT 

The interaction between the constituent models for waves, currents, se- 
diment transport and bottom level changes in a class of compound 2DH 
mathematical models of transient sea bed evolutions in the coastal zone 
is investigated mathematically, using the theory of characteristics and 
a harmonic analysis technique. This leads to contrary indications as to 
the importance of including diffraction in the wave model and to the un- 
ambiguous conclusion that the bottom slope effect on the sediment trans- 
port is indespensable for the mathematical system to be inherently 
stable. This conclusion is shown to imply that depth-integrated current 
model are insufficient to describe the flow in this type of morphologi- 
cal computations for the nearshore zone or complex coastal areas. 

INTRODUCTION 

In recent years, the progress in the physical understanding and the 
mathematical modelling of the water and sediment motion in coastal areas 
has enabled the numerical simulation of these phenomena to become a 
widely applied and useful tool in coastal hydraulics and coastal zone 
management. Besides, they seem to have brought the mathematical model- 
ling of the integrated effect of these phenomena, the 3D morphological 
evolution of the sea bed, within reach. Various research institutes, all 
over the world, are making substantial research efforts in this field 
(see e.g. Fleming et al., 1976; Watanabe, 1982; Coeff§ et al., 1982; 
McAnally et al., 1984; Yamaguchi et al., 1984; De Vriend, 1987a,b). 
One of the cornerstones in the development of mathematical models of 
transient sea bed evolutions is a thorough physical knowledge, of the 
elementary phenomena tide, waves, currents, sediment motion and sedimen- 
tation/erosion, as well as their interactions (also see De Vriend, 
1987a). The present paper attempts to contribute to this last field of 
knowledge, which still exhibits significant lacunae. 
After the description and the mathematical formulation of the class of 
models to be considered, the interaction between the constituent models 
is analysed mathematically and the sensitivity of the model to some 
major simplifications in the constituents is assessed. Finally, conclu- 
sions are drawn on the applicability. 

GENERAL OUTLINE OF THE MODELS 

The models concern 3D transient morphological evolutions in coastal 
areas. Basic elements are depth-integrated wave and current models, 
local sediment transport formulae and the sediment balance. 
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Fig. 1 gives an aggregate flow chart 
of the interconnection of these ele- 
ments. Although the present analysis 
concerns systems of differential 
equations and the behaviour of their 
solutions, this flow chart also per- 
tains to their elaboration in a nume- 
rical model, so that it can be consi- 
dered as describing a computational 
procedure. 
Fig. 1 shows that the constituent 
models are connected in series, with 
feedback via the bed topography only. 
This is a simplification of reality, 
as it ignores other feedback mecha- 
nisms, such as current refraction. On 
the other hand, it focuses attention 
on the morphological interaction to be 
investigated. 
Another important simplification is 

the absence of wave dissipation. This means that wave-driven currents 
are left out of consideration as a mechanism through which the waves can 
interact with the other components of the system. The principal 
remaining interaction mechanism for the waves is the stirring of 
sediment. From a practical point of view, this is a fairly limitative 
assumption, but on the other hand the interaction analysis should be 
built up step by step. After the analysis for currents alone (De Vriend, 
1987a,b), this is another step on a much longer way to go. 

Fig- Flow chart of inves- 
tigated models 

WAVE MODEL 

The most general formulation of the wave models to be considered is 
based on the mild-slope equation for linear monochromatic unidirectional 
gravity waves (Berkhoff, 1976). Ignoring current refraction and dissipa- 
tion, this equation can be written as 

ox ^ccg dx; 5y <ccg 8yJ + ^ ccl = 0 
g 

(1) 

in which:  x, y = cartesian co-ordinates in the horizontal plane, 
c   •» phase celerity of the waves, 
c   » group celerity of the waves, 
k   = wave number and 
¥   = complex wave potential. 

Substitution of the wave-type expression 

¥(x,y) = Re [a(x,y) exp {i<£(x,y)} ] (2) 

in which i = /(-l) and the amplitude and phase functions a(x,y) and 
4>(x,y) are real, leads to the eikonal equation 

(5»,2 + (»)2 . k2 + ^__ 
ox     oy        cc a 

8(cc ) 
r 8_ 8a 

ox  ox 

0(CC ) o      •> 

+     CJ + 7 LZT + 77JJ   (3) 
oy  oy 9y^ 

and the transport equation 
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9  .   o 0$, , 8      o 8<S.   „ ... 
5? (CV  a^> + eF <CV  BF> • ° <4> 
For purely refracting wave fields (geometric optics approximation), the 
last two terms of (3) drop out and the equations can be reduced to (also 
see Appendix I) 

§j (k sinO) - |^<k cos0) = 0 (5) 

|^ (E cg cosG) + |^(E cg sine) = 0 (6) 

in which 0 denotes the direction of wave propagation and E = %pga2 is 
the energy density of the wave field. 
Both the complete refraction/diffraction equations (3) and (4) and the 
refraction equations (5) and (6) will be investigated in their interac- 
tion with the other components of the model. 

CURRENT MODEL 

In order to avoid unnecessary complications, the current model includes 
a number of simplifying assumptions, most of which can be shown to have 
no essential influence on the interaction (De Vriend, 1985): 
• depth-integrated formulation in terms of depth-averaged velocities, 
• almost-parallel flow (no secondary currents), 
• rigid-lid approximation for the free surface, 
• no horizontal diffusion or dispersion of momentum, 
• no wave influence on the bottom shear stress, 
• bottom shear stress acting in the depth-averaged flow direction, 
• no coriolis acceleration, 
• no external driving forces, and 
• steady flow. 
Under these assumption, the flow model can be written as 

ou j.  ^H. _  i §£.        bx u 8x + v 5y - ~ p 8x ~ ph 
5v    8v _  _1 8p_   by 

u ox + v oy _  p oy ~ ph 
8u  ov ,   oh ,   oh 
T- + r—+UT-+V-T-=0 (9) 
8x  oy    8x    8y v ' 

in which:  u, v    = depth-averaged velocity components 
p      = total pressure (piezometric head * spec, weight) 
p      = mass density of the fluid 
h      = water depth 
T  , x      =  bottom shear stress components, 
bx  by 

For the system of equations to be closed, the bottom shear stress has to 
be related to the other dependent variables in the system. The present 
analysis requires no further specification than 

~-=  ru; -jj2- = rv with r = fnct(ut, h); U{. = (u2 + v2)^      (10) 

The flow model (7) through (10) will only be considered in its complete 
form, as the effects of simplifications have been investigated before 
(De Vriend, 1985 and 1987a). 

(7) 

(8) 
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SEDIMENT TRANSPORT MODEL 

As was stated before, the sediment transport model Is basically restric- 
ted to sediment transport formulae. Especially in coastal areas, where a 
large part of the transported sediment is suspended load, this can be a 
rather limitative assumption, though not necessarily fatal (c.f. Van 
Banning et al., 1987). Nevertheless, this type of model is choses, not 
only from the step-by-step philosophy, but also because transport formu- 
lae are widely used in practice. All the same, systems including suspen- 
ded load models remain to be investigated (cf. Lin et al., 1984). 
In addition to this restriction, it is assumed that, apart from the bot- 
tom slope effect, 
• the magnitude of the transport is a function of the current velo- 

city, the water depth and the wave height (and possibly other quan- 
tities that are not figuring as dependent variables in the present 
system), 

• the direction of the transport coincides with the depth-averaged 
flow direction, and 

• the magnitude of the transport is independent of the derivatives of 
the dependent variables. 

This leads to the following mathematical formulation of the transport 
without bottom slope effect; 

S' = — S' ; S1 = — S' with S! = fnct (u,.,h,E) (11) xutyut      t       v t> > / 
t      J t 

in which S^ and Sy are the components of the transport vector and S{. 
denotes its magnitude. 
The near-bottom sediment transport is influenced by the bottom slope, 
via the downslope gravitational force, acting on the bed load, and via 
the vertical component of the near-bed velocity, acting on the suspended 
load. These effects can be incorporated via the following approximative 
adjustments (cf. Koch et al., 1981 and Bailard, 1981): 

9z. S dz, 
St = SJ. (l-px g^

2) and tana s -J~ = tan6 - P2 -g— (12) 
x 

in which Zv, denotes the bottom level, and s and n are stream-oriented 
and stream-normal horizontal co-ordinates (metric), respectively; 6 is 
the depth-averaged flow direction. 
Depending on the transport concept, the factors p^ and P2 are equal 
(Bailard, 1981) or not (Koch et al., 1981) and vary with the wave and 
current parameters. For simplicity, they are chosen equal and constant, 
i.e. B - B = p, so that (11) and (12) can be elaborated to 

Sx = SJ. (cos6 - P •$£•)  and Sy = S't  (sin6 - B ~) (13) 

provided that the bottom slopes are small compared with p-1. 

BOTTOM LEVEL CHANGES 

The rate of change of the bottom level follows from the conservation of 
sediment mass 

5zb  as   as 
(l-e)~ +~ + TT-= ° <14> •p'  ot   8x   8y 

in which ep denotes the porosity of the bottom. This part of the model 
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is quite unambiguous and, if combined with a transport formula, leaves 
no room for alternative formulations. 

LINEARIZATION OF THE SYSTEM 

Equations (3), (4), (7) through (10), (11), (13) and (14) basically from 
the mathematical model equations, although additional expressions have 
to be given for c, c„, k, h, r and S£ in terms of the dependent vari- 
ables 3? (or 0), a (or E), u, v , p and zj,. It is not necessary, however, 
to have these expressions explicity. The analysis of the system concerns 
the linearized equations in the vicinity of an arbitrary point in the 
solution space. If the values of the dependent variables at this point 
are indicated by the suffix "o", a non-linear relation like the sediment 
transport formula, for instance, is approximated by 

os'      as'       as: 
S' (ut,h,E) - S<t    + (ut-ut ) ^|0+ (h-ho) ^—10+ (E-E0) ^1    (15) 

o       o   t o 
For each of the non-linear additional expressions, it is sufficient to 
specify the derivatives with respect to the relevant dependent vari- 
ables. 
After some elaboration of the equations, the most convenient way to 
specify the necessary quantities of this type turns out to be the speci- 
fication of 

u as:        .  u„ as'       n   as„ 
VlV-^^-l];^,^^^-!] ; T^f,^  (16a) 

p  t p  t  t p t 

C.h£.c  .!!_£& ;R a!t|r_      har 
h  c dh '  gh  c dh '  u   r 8u '  h  r 8h 

Since the wave number in the present wave models is inversely propor- 
tional to the phase celerity c, the relation between k and h is suffi- 
ciently characterized by kQ and Ch. Finally, the rigid-lid approximation 
provides the linear relation 

h = zs - zb (17) 

in which z Is the prescribed elevation of the rigid lid. 
Making use of these relations and definitions, and considering T^, T2, 
T3, Ch, Cgh, Ru 

and Rh as constants in the vicinity of the point "o", 
the system of equations can be elaborated as described in Appendix I. 
The resulting system contains two equations describing how the wave 
field responds to small changes in the bottom topography, three equa- 
tions describing how the current field responds to such changes and one 
equation describing how the bottom elevation responds to small changes 
in the wave and current fields. This last equation reads (also see: De 
Vriend, 1987b): „     , 
az       s'   az    az      a^z  a^z    s' 

at   V  2       V  h Lu 8x   u 3y J  M t L3x2   8y2 J   2 u3 
t       t t 

S' 
j r  2 ou J_   

8u J_   <^v   2 Svi . _,  t ru 8a , v_ 8a-i  .    ,.QS + \ -  v T— + uv ^— + uv -5 v ~Z~~    +  T, — —• T— + — r— =0    (18) L    8x     3y     8x     8yJ   3 a  Lu 3x  u 8yJ        v  ' 

This can be considered as an advection/diffusion equation for the bottom 
level, in which the last two terms, representing the effects of the wave 
and current fields, act as source terms. It shows that the bottom evolu- 
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tion must have a partly propagative, partly diffusive character, the 
former due to the non-linearity of the transport formula (otherwise the 
factor T9-T1 equals zero), the latter due to the bottom slope effect on 
the transport. 

CHARACTERISTICS ANALYSIS 

The system of equations derived in Appendix I can be analyzed with the 
theory of characteristics (Courant et al., 1961; also see Flokstra, 
1981), which provides information on the elementary behaviour of the 
bottom changes, such as the celerity of bottom disturbances. Application 
of this technique to the same system without waves revealed (De Vriend, 
1987b), that the bottom evolution has a propagative character if the 
bottom slope effect on the sediment transport is ignored. Even though in 
that case the transport is directed exactly downstream, bottom distur- 
bances will not only propagate downstream with the well-known ID celeri- 
ty derived by De Vries (1969) and also showing up in Eq. (18): like an 
elementary disturbance in the water surface of a pond, they will also 
expand in all directions, in a peculiar star-shaped pattern (see Fig. 2). 

(• T^ 
disturbance in ree surface flow 

Fig. 2 Celerity patterns in 2DH models. Top left: current and surface 
wave. Top right: current and alluvial bottom. Bottom: numerical 
simulation of elementary bottom evolution. 

Although formally the propagative character vanishes when the bottom 
slope effects are included (vide the diffusive character these effects 
introduce into Eq. (18)), numerical experiments have shown the typical 
celerity pattern to remain recognizable in the bottom evolution, like it 
is in the numerical experiment shown in Fig. 2. Therefore, a characte- 
ristics analysis with the bottom slope effects disregarded is expected 
to provide relevant information on the elementary bottom evolution, also 
in the presence of waves. 
Application of the characteristics analysis to the present extensive 
system is a cumbersome task, which cannot possibly be described here. A 
detailed description and a discussion of the technique are given in a 
recent publication by the author (De Vriend, 1987b). Here only some of 
the results will be given. As the sustaining numerical experiments are 
awaiting the completion of an appropriate computer program, these re- 
sults are presented with some reserve. 

If the complete mild-slope equation is incorporated in the model, the 
bottom celerity components with respect to the stream-oriented co-ordi- 
nate system are given by 
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s- s; 
cs "  (T2"Tl) h" + T2 h" ?;   cn l2 F 

in which the parameters 5 and n are related by 

V + (2Z2  - 51 |) n2 + I  (l +  I)3 = 0 

(19) 

(20) 

, .cn 

with diffraction 

Co        s 

without diffraction 

Fig. 3 Influence of wave diffraction on bottom celerities 

These expressions, represented graphically in Fig. 3 (left), are exactly 
the same as for the case without waves. So the celerity is qualitatively 
independent of the way the sediment transport is influenced by the wave 
height: T3 does not figure in (19) or (20). Quantitatively, the celerity 
does depends on the wave height via S£. 
If the sediment transport depends on the angle between the wave and cur- 
rent directions the agreement with the case without waves is disturbed. 
So the conclusion is sensitive to the type of transport formula. 

An entirely different celerity pattern can emerge when using simplified 
wave models. As this pattern is determined by the highest derivatives of 
the dependent variables in the various equations, disregarding diffrac- 
tion leads to an essentially different system in this respect. 

With the refraction equations (5) and (6), instead of (3) and (4), the 
expressions for the bottom celerity components read 

cs " <VTi> F 
st   1    st  1 

+ T2 h~ l + 2  CghT3 h~ + ~ C*-Tl 2 V^3 h <?* 

cn - T2 h" 
1      St 

* + 2 ch T3 TT 

with the parameters Z,  Tl» 5* and n* related by 

I =  (1-X) (2X-1) and n = ± 2 X [x(l-X)]^ 

V  = X1 
,  X3(l-X)3 [xg sin(e-S)  cos(9-6) + n (1-X)  sin2(9-6)]2 

(1-X)2  [X2 cos(9-6) + \ n sinO-e)]4 

(21) 

(22) 

(23) 

(24) 

(25) 
6 Xg sin(9-6) cos(9-6) + n (1-X) [sin2(9-6) 

^* " 2X       (1-X) [X2 cos(9-6) + \  T) sinO-e)]" 

in which the parameter X goes through all values between 0 and 1. Note 
that (23) is equivalent to (20), so that the celerties (21) and (22) 
consist of two parts, one corresponding with the case without waves and 
one proportional to Tj,  the latter also depending on the angle between 
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the wave and current directions. 
Fig.   3  (right)  gives  an example of  this  celerity pattern,   for 

T = - 2;  T - 2;  T,= 2;  C = 0.5;  C    = 0.375 and 0-6 = 45° 
1 2 o h gh 

corresponding with the adapted Engelund-Hansen transport formula (Van de 
Graaff et al«, 1979) and the shallow water wave celerities. 
The resulting celerity pattern is essentially different from the one 
with diffraction included: it is no longer a closed curve and, conse- 
quently, the area of influence has become semi-infinite. On closer in- 
spection, this behaviour is related to an essential property of purely 
refracting wave fields: if a wave ray encounters a bottom disturbance, 
its entire further course is influenced, and so is the wave height along 
this part of the ray (see. e.g. Dingemans, 1985). 
Caution is required when interpreting these results in terms of applica- 
bility of types of wave models in the computation of transient morpholo- 
gical evolutions. The results suggest that a refraction model as de- 
scribed by Eqs. (5) and (6) be not applicable. It has to be noted, how- 
ever, that the characteristics analysis focuses attention on a single 
aspect of the bottom evolution, viz. the celerity of small disturbances. 
It is thinkable that this aspect is irrelevant to certain situations. 
Only numerical experiments for well-selected test cases can show this. 

HARMONIC ANALYSIS 

In addition to the characteristics analysis, a harmonic analysis can be 
utilized to investigate the Interaction between the constituents of a 
compound morphological model (cf. Deigaard, 1983 and Tsujimoto et al., 
1985). It provides information on the propagation and amplification/dam- 
ping of harmonic bottom waves. In principle, it can be applied to the 
transient morphological processes, considering the bottom-wave evolution 
in time, as well as to the equilibrium bottom topography, considering 
the variation of harmonic modes in space (cf. Struiksma et al., 1985). 

So far, the harmonic analysis of the system including wave effects has 
only been successful for the transient processes. Like the characteris- 
tics analysis, this technique considers the linearized system, for sim- 
plicity about the point (0O, aQ, uQ, v = 0, pQ, zb = 0) 
in the solution space. The resulting system is given in Appendix I. 
The technique of the harmonic analysis is well-known: harmonic perturba- 
tions of the type 

zb = zb exp {i(ktt + kxx + kyy)} (26) 

with kt complex and k^  and ky real, are substituted into the^linearized 
system of equations, to yield a system in 0, a, u, v , p and z\,,  with 
kt, kx and ky as parameters. The condition under which there is a non- 
trivial solution gives a relation between kt, kx and ky, from which kt 
can be solved if kx and ky are given. 
In order to have a reference for the wave effects, this technique will 
first be applied to the system without waves. Without going into the al- 
gebraic operations, the result reads 

4A a2v2 (o2+v2) + 2B v2 [o2 + (1+Ru)v
2] 

Re(C ) = a {-  1 + —C-•  9 5—5-5 % •••• 9 , }        (27) 
c 4a2 (a2+v2)2 + [a2 +  (1+Ru)v2]2   ' 
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2A a2v2 [a2 + (1+Ru)v2] -4B a2v2(a2+v2) 

I«(Cc) = Dc(a
2+v2) +  C 4g2 (g2+v2)2 + [fl2 + (1+Ru)v2]2  

with: 2<Wro 
Ac = T2- TX ;  Bc 

Ir kxi v = Tr ky 

T,  1 + R - R, 

(28) 

(29) 

2rA, -A-2.    (30) 
l2 n      "o 

Note that this system contains two Important physical length scales 
(also see Struiksma et al., 1985), viz. the adjustment length of the 
flow, \ , and the adjustment length of the bottom, X , given by 

PhA (31) X = -T-— and X w  2r       s 
o 

The second term in the expression for Im(Cc) is easily shown to be nega- 
tive if Ac > 0, and R^ < 0, as is usually the case. This means,that for 
Dc = 0, i.e. in the system without bottom slope effects, all modes are 
unstable. So this system has no stable solution (cf. De Vriend, 1985). 
For D > 0 (negative values are not realistic), the additional term in 
(28) is positive, i.e. the bottom slope effect on the sediment transport 
has a damping effect on bottom disturbances, as it should according to 
the bottom level equation (18). Besides, the additional term increases 
with the resultant wave number, so this damping effect will be stronger 
for shorter waves (which have steeper slopes). 
As an example of how this works out quantitatively, Fig. 4 gives a 
graphical representation of (27) and (28), with and without bottom slope 
effects. The values of the constants correspond with the Engelund and 

10 

v 

v           Dc 0 

5 

// -0.2- 
 0.1 — 

O 
0 

^ 

-5-01— 
 02- 

-5 

-10 —--T£ <E> 
Ro <£> 

Fig. 4 Initial growth rate of harmonic bottom disturbances (current 
only) 

Hansen transport formula (T^= -1, T2= 4) and Chezy's bottom friction law 
(Ru= 1, Rj,= -1. r0= gu0/[C

2h]). In the case with bottom slope effects, 
Dc was chosen 0.01, which corresponds with 8 " 4. For Dc » 0,  Im (Cc) 
is always negative, indeed, whereas for Dc *  0 , Im (Cc) is only nega- 
tive in two relatively small areas, representing fairly long bottom 
waves. The existence of such unstable modes is not necessarily unrealistic 
(Deigaard, 1983; also see Struiksma et al., 1985 and De Vriend, 1987a). 
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When applied to  the  system including waves,   the harmonic analysis  yields 
the  following result 

4A    cx2v2(a2+v2)  + 2B v2[o2+(l+R )v2] 

Re(Cw)   -  <r{-  1  + 4o2(o2+v2)2  +   [a2  +  (1+RJV2]2       + 

4C Y2X2"E   (c|>2 + X2)2 

+    4YV-(J+X2)2       1 (32) 

2A a2v2[a2+(l+R  )v2] - 4B a2v2(a2+v2) 
9         o                        W                                               U                                   W 

Im(C     )     =    D (0Z+VZ)    +    9 K 9—9 g—T TT9  
u w v ' 4a2(a2+v2)2 + 5a2 + (1+R )v2]2 I   -   u       v«

2-"-"2 

W W 

with 

(33) 

kt 
Cw = 2(T -T + \C    Tjr     ;   *=a Cos9o+ V  sln9o;  *=a sln9o" V cos9o       (34) 

2     1 gh 3    o 
T„                                       1+R -R,                               Q                   2r h 

.  2  u    h _      p o  o .-.ex 
w       T  -!,+ iC.L   !     w"    w 2       ;     w " T -T + % C ,T_     u k     ; 

21gh3 21gh3o 

r hi  _ gh  3  o_ .,,. 
w       T-T.+ ^C.T'     w       T-T^ \ C UT, ;   Y       2r     K U°; 

21 gh3 2    1 gh 3 o 

Apart from the coefficients, these expressions are very much the same as 
in the case without waves: the only difference is an additional term in 
the expression for Re(C). This implies that the amplification/damping 
behaviour of the bottom disturbances remains qualitatively the same, 
with a predominant role for the bottom slope effects. 
As a quantitative example, Fig. 5 gives graphical representations of 
(33)    and    (34),    without    and    with    bottom    slope 
effects D„ = 0 and D„ = 0.01, w        w      * 
respectively), without and with diffraction (y = 0 and y  = 30, 
respectively). 
The values of the constants are chosen the same as in the example in 
Fig. 3, viz. Tx=-2, T2=2, T3=2, Ch=0.5, Ch=0.375, but now with eo=0" 
(waves and current in the same direction) and with R^l and Rh=-1 
(Chezy). Apparently, the diffraction effect on Re(Cw) is rather small, 
especially for the longer modes. 
These results suggest that the incorporation of diffraction in the wave 
model should have a minor effect on the elementary behaviour of bottom 
disturbances. However, caution should be exercised, again, when inter- 
preting these results in terms of applicability of types of wave models. 
The analysis focuses attention on the evolution of small harmonic bottom 
perturbations, starting from the linearized system of equations. 
Besides, the indication it gives is contrary to the one given by the 
characteristics analysis. This does not imply that the two analyses 
yield contradictory results, since they consider different aspects 
(amplitude behaviour and propagation behaviour, respectively). Which of 
these aspects is decisive for the sensitivity of the model to diffrac- 
tion is still not clear. Numerical model tests and further research are 
needed in order to arrive at definite conclusions. 
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Re   (£> Im   (£) 

Re  <U Im <E) 

Fig. 5 Influence of wave diffraction on initial growth rate 
(waves + currents) 

DISCUSSION 

The investigated system, though including the principal interacting con- 
stituents (waves, currents, sediment transport, bottom level changes), is 
still a highly simplified representation of reality. For instance, the 
interaction via the response of wave breaking and the induced currents to 
morphological changes is left out of consideration. Especially in the surf 
zone, this seems to be an interaction of primary importance. 

Nevertheless, the present analyses are practically relevant. If the dis- 
sipation of wave energy by breaking is formulated according to Battjes et 
al., (1978) and the corresponding driving forces per unit area are taken 
proportional to the dissipation density divided by the phase celerity 
(Longuet-Higgins, 1970; Dingemans et al., 1987), the relevant terms in the 
wave and current models are easily shown not to contain the highest 
derivatives of the dependent variables. Hence this interaction has no 
effect on the bottom celerity pattern found from the characteristics 
analysis. The harmonic analysis with this interaction included is still in 
progress, but is has already become clear that the bottom slope effect on 
the sediment transport is still a major (if not the only) damping agent in 
the system. 
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Another limitation of the present work is, that only linearized systems 
are considered. When there is a better outlook on the composition and the 
validity of mathematical models of transient 3D sea bed evolutions, their 
non-linear behaviour, including the possibility of bifurcations and 
chaotic behaviour, will have to be investigated. 

The harmonic analysis of all variants and extensions of the model that 
have been investigated so far, clearly indicates that the bottom slope 
effect on the sediment transport is indispensable in the computation of 
transient morphological evolutions. If this slope-reducing mechanism is 
included, however, also the principal slope-generating mechanisms have to 
be taken into account, if it were only not to wind up with a zero beach 
slope. 
In the nearshore zone, the onshore transport due to the asymmetry of the 
near-bottom orbital motion is a major slope-generating agent, as appears 
from investigations of coastal profile evolutions (Stive, 1986; De Vriend, 
1986). A fascinating corroboration of this statement, though for edge 
waves instead of sea or swell, was given by Holtnan et al. (1982). 
On the other hand, the wave-induced undertow in the surf zone causes an 
off-shore, so usually down-slope transport that is mostly stronger than 
the asymmetry-induced on-shore transport there (De Vriend et al., 1986). 
So, once the asymmetry-induced transport is included in a model of near- 
shore morphological evolutions, the transport due to the undertow, and 
hence the undertow itself, cannot be left out of consideration. This means 
that a depth-integrated current model is not sufficient for this kind of 
situations. 
In most of the practical applications, the model area extends beyond the 
nearshore. Outside the surf zone, the undertow is absent and the waves 
induce only a much weaker drift current. The asymmetry-induced transport 
is found wherever the waves "feel" the bottom (so usually in large parts 
of the model), but it decreases as the water depth increases. This does 
not imply, that at deeper water the bottom slope effect is the only re- 
maining cross-stream mechanism and that, consequently, a depth-integrated 
current model suffices. In the complex situations to which 2DH models use 
to be applied, the flow is curved almost as a matter of course. Besides, 
sand coasts without strong winds are rare and the coriolis-effeet is 
present almost everywhere. Hence secondary flows due to wind, curvature 
and the coriolis-effect will occur and exert their influence on the 
sediment transport and the morphological changes. So in these cases the 
application of depth-integrated current models is disputable, as well. 
This negative conclusion regarding depth-integrated current models does 
not mean that 2DH flow computation facilities are useless for morpholo- 
gical computations. Experience with river bend modelling (Struiksma et 
al., 1985) and recent investigations on the modelling of 3D nearshore 
currents (De Vriend et al., 1986) make clear, that without too limitative 
assumptions, the flow can be described with a standard depth-Integrated 
model, extended with a simple profile technique for the secondary flow. 

CONCLUSIONS 

The two methods used to analyse the interaction between the constituents 
of the present class of compound 2DH mathematical models of transient sea 
bed evolutions yield contrary indications on the importance of diffraction 
in the wave model. 
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The harmonic analysis unambiguously shows, that the bottom slope effect on 
the sediment transport (via gravitation and via vertical advection) is 
indispensable for inherent stability of the mathematical system. 
The necessity to include this bottom slope effect implies, that the in- 
fluence of the asymmetry of the wave-induced orbital motion and of 
secondary flows has to be taken into account, as well. Consequently, 
depth-integrated current models are insufficient to describe the flow in 
models of 3D morphological evolutions, in the nearshore zone and in com- 
plex coastal areas. 
Depth-integrated current models extended with a simple profile technique 
to describe the secondary flow appear to be suited for this kind of ap- 
plications. 
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APPENDIX I - ELABORATION OF THE CONSTITUENT EQUATIONS 

If the right-hand member of the eikonal equation (3) is named K2, this 
equation can be replaced by 

•j— = K cosG and -r-• = K sinO (37) ox oy 

Then the compatibility conditions for these phase function derivatives 
and the transport equation (4) can be elaborated to the linearized 
system 

c c + c 
, c„i  fc2 h „ „ s .  1   fV2a,   h  gh  ,9a oh  9a oh, L„(eJ ~ T — L 00 + —-x L ( J + ~-5- L + -1 + h.o.t. - 0 
2V '       K2 h  1     2K2 V  a ;   2K2ha  Tox ox  by 9y;      (38) 
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C C 

- Ve) +! Va>+ 2? ^ (^+ t-f + (i - ^) r] Vh>+ 

C + C 
h  gh   ,8a 8h  8h 8h., „ ,„„, 

+ „ a" L„ (— — + — —) + h.o.t. = 0 (39) 
2<^ha  2 l8x 6x  8y 8y; 

in which V2 denotes the Lapalician and "h.o.t." indicates higher order 
terms in the derivatives of a and h. The operators L^ and L2 are defined 
as 

Lj^ = cosG 55: + sin0 3^  and  L2 » sinG -g^ - cosG -gr: (40) 

The flow equations (7) though (10) remain unaltered, except for the 
linearization of the bottom shear stress 

^ = (^) + (u-uo) r0+ («t- ut ) ^!° Ru+ (h_ho) V° ^        (W) 
o o  t o o 

and a similar expression for the y-component. 

Substitution of the linearized expression for the sediment transport, 
(15), into (12) and (13) and subsequently into the sediment balance 
equation (14) yields, after some elaboration and making use of the 
equation of continuity (9), the advection/diffusion equation (18). 

Equations (38) through (41) and (7) through (9) form a representation of 
the system in which all derivatives refer to the dependent variables 
9, a, u, v, p and Zu (or h). 
If this system is linearized about the point (G0,aQ,u0,v=0,po,z^=0) 
in the solution space, i.e. if the x-axis is oriented downstream and the 
undisturbed bottom is horizontal, it can be written as 

Vs,)VW + ^Vv2a,) = 0 (42) 
OOO 

C 
- L (0') _ _li L (z.j + Z- L (a,j + ^— L  (V2a.) . 0 (43) 

u           <y 1 

- ._ ,  — L (z') + — L (a') +  0  L r^2" 
lv '   h  2VV  a  2V  ; 2a k2 2 

0        0 00 

ou*    1 dp'       ,,,„-,   , „ uoro 
u. ^r- --T1T- (1+R ) ru1 -f^ -^ h' (44) o 8x     p 9x 

Sv' =  18 
8x     p 8y 

o 

(45) 

Ou' , OV'     O  b   . ,.,.. 
8x   9y   h 8x 

S  _ . S S 
8z^ t 8z' t_.      t - . 
^+(V^l)h^olT-^tV^-T2^^-+T3a^|^      (47) 

in which the primes indicate the deviation of the relevant quantity from 
the solution in point "o" in the solution space. The operators L. and L„ 
are given by (40), with 0 = 0O. 
The system (1.9) through (1.14) is subject to the harmonic analysis. 




