
CHAPTER 71 

THE DYNAMICS OF OSCILLATING SHEETFLOW 
1) 2) 

by ir. W.T. Bakker   and ir. W.G.M. van Kesteren  . 

1.ABSTRACT. 
Two mathematical models for the simulation of the dynamics of 
sheetflow are presented, an analytical and a numerical one. 
In the analytical model the theory of Bagnold (1954) is implemented: a 
constant ratio between shear stress and normal stresses is assumed. 
In the numerical model the motion of each layer of grains is con- 
sidered separately; each layer exists of a rigid rectangular structure 
of spherical grains. Grain- grain interaction between the successive 
layers occurs in two ways: on one hand viscous interaction forces, 
comparable with squeezing forces in lubrication problems and on the 
other hand direct contact with elastic response when the distance 
between the grains becomes less than .01 of the grain diameter. When 
the relative motion of adjacent layers results into compression or 
dilatation, a resistant force analogous to the Darcy law is 
assumed.The numerical model has been combined with the turbulent- 
boundary layer model of Bakker and v. Kesteren (1984). 
Results of computations are compared with measurements of Bagnold 
(1954) and Horikawa et al (1982). 
The analytical model predicted the concentration in the sheet flow 
layer and the intrusion depth rather well, where the numerical model 
gave reasonable results with respect to the velocity pattern above the 
sheetflow layer. 
It is concluded, that up to now the more sophisticated assumptions of 
the numerical model do not lead as yet to higher accuracy with respect 
to the intrusion depth of the sheet flow, probably because the separa- 
tion between sheet flow and the turbulent boundary layer above has 
been assumed too smooth. 

2. INTRODUCTION. 
In this paper two mathematical models for the simulation of the 
dynamics of sheetflow are presented, an analytical and a numerical 
one. 
Apart from the approach, also the physical schematization of both 
models is quite different. 
In both models it is taken into account, that at high velocities a 
thicker layer is moving than during the time lapses with lower 
velocities. 
In the analytical model (Ch.  3)  the theory of Bagnold (1954) is 
implemented: a constant ratio between shear stress and normal stresses 
is assumed. 
In the numerical model (ch.4) the motion of each layer of grains is 
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considered separately; each layer exists of a rigid rectangular struc- 
ture of spherical grains. 
Grain- grain interaction between the successive layers occurs in two 
ways: on one hand viscous interaction forces, comparable with squeez- 
ing forces in lubrication problems and on the other hand direct 
contact with elastic response when the distance between the grains 
becomes less than .01 times the grain diameter. When the relative 
motion of adjacent layers results into compression or dilatation, a 
resistant force analogous to the Darcy law is assumed. 
Results of computations are compared with measurements of Bagnold 
(1954) and Horikawa et al (1982) (ch.4.2). This leads to the conclu- 
sions, given in ch 5. 

3. ANALYTICAL COMPUTATIONS. 

3.1 Assumptions 
For the analytical computations the theory of Bagnold (1954),(1956), 
concerning bed load in a uniform flow, is used. According to this 
theory it is assumed that a dispersive pressure P proportional to the 
grain shearstress T is exerted on the grains. In the viscous region 
Bagnold finds: 

T=.75 P du (la) 
where T is related to the velocity gradient -:— in the following way: 

T = 2.2 A3/2P v %± (lb) 
w dz 

in which p =spec. density water, v=kin. viscosity, u=horizontal 
velocity, z=vertical coordinate (pos. upwards); A is the linear con- 
centration as defined by Bagnold (1954): 

A = [(co/c)1/3 - I]"" (lc) 

Here c is the concentration, having a maximum c0.This maximum belong- 
ing to the maximum packing density, equals .74, assuming a tetrahedral 
rectangular piling as depicted in fig 1 and 8. 
The validity of the viscous region for the sheetflowphenomena can be 
estimated with the Bagnold-number: 

p /TD2 

N = -^  §"• < 40 (2) 
p v dz 
w 

in which D = grain diameter and p = spec, density sand.    , 
Substitution of pg/pw=2.65, A=10f D=.2 mm, v=10-

5m2/s and jjp =100 s-1 

yields:  N = 34 . 
In a first order harmonic solution the shear stress T is given by: 

T = T sin tot (3) 

Starting with the assumption in eq.(l), eq.(3) yields for the disper- 
sive pressure: 

P = P | sin oat| (4) 

where w is the angular frequency of the motion and t is the time; the 
superscript "*" denotes a top value. Furthermore it is assumed, that 
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Fig.l   Configuration of moving  grain layers. 
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Fig.2 Mean and second harmonic of vertical pressure gradient (p). 

Fig.3 Vertical motion of two 
adjacent grain layers. 

Fig.4 Mean concentration profile 
in the sheetflow (anal.sol.). 
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at the moments of rest during the changing of the direction of the 
oscillation the concentration is constant over the height of the sheet 
flow layer. The mixture of sand and water in this layer is assumed to 
be uniformly distributed in horizontal direction and is supposed to 
oscillate by means of the horizontal pressure gradient and the drag 
force acting on the grains. 

3.2. Analysis. 
Where D is the grain diameter, let hD be the mutual vertical distance 
between the center of two adjacent layers of grains of the sheet flow, 
when the grains attain their time-averaged vertical position (fig.la). 
Then the vertical force p, acting on a layer of grains equals: 

p = - hD -~-  |sin cot| (5) 

This vertical force can be approximated by its time-average p0 and its 
second harmonic, having an amplitude p2 (fig 2): 

2,_ 3P     *    4 , _ 3P ,,* 
PO-;•^

5
  P'-ST•!! (6) 

Averaged over the wave period, p0 should balance the weight of one 
layer of grains. 
Furthermore, the second harmonic is counteracted by the vertical drag 
force a.z , where z denotes the time-derivative of the vertical 
position z° of a grain8and "a" denotes a drag coefficient: 

3ir p v 
a=b2D (1-c)* (7) 

The drag coefficient is according to Stokes, only hindered settling 
has been taken into account by means of (1-c)3, where c is the 
concentration. In (7) bD denotes the horizontal distance between the 
grains. From-the dynamic equation for the second harmonic, z can be 
expressed in p2 and a: ° 

z = p2/(2ioa) (8) 

Let the grains in closest packing have a distance h0D to each other: 
h0 3.8. This is reached everywhere at the moment of turning of the 
direction of the orbital velocity. However, 1/1(of a wave period later, 
the porosity is different everywhere, because of the vertical gradient 
of the vertical motion: the upper grain dances more vigorously than 
the lower one (fig 3). Therefore, the time-averaged distance between 
the grains equals: 

hD = haD + hD |j (z ) (9) 

Thus the time-mean vertical spacing between the grains can be ex- 
pressed in the variation of the vertical pressure p2. However, this 
value p2 equals (2/3)p0, according to (6), p0 being equal to the 
weight of a grain layer. Thus from (8) it shows, that z only varies 
in vertical sense because the concentration varies in vertical sense. 
One thus understands, that (9) is essentially a differential equation 
in the concentration, as also h can be expressed in the concentration: 
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h = (l//2)(c0/c)1/3 (10) 

After some elaboration (cf. Bakker & v.Kesteren (1982)), one finds the 
dimensionless equation: 

|Sy- {h0/2.(c/c0)
1/3 - 1}/{3(1 - c2)} (11) 

2 

z*=z/Z;   Z = ^ ^_2w &_0 {1) 
54    p    w v 

w 

Eq (11) has been solved, using Simpson's integration method, thus 
giving c as function of z (fig 4) 
A first approximation for the time dependent concentration can be 
found from the mean concentrationprofile resulting from eq.(ll). 
Neglecting phase shifts a first order time dependent distance between 
the grains is given by (h denoting the mean value of h): 

h(t)D = hD + (ED - h0D) sin (2u)t) (13) 

Substituting eq.(lO) into (13) gives for the timedependent concentra- 
tion (fig 4) (c denoting the limiting value of the concentration in 
the sheetflow): 

cU) . 

where 

•  [(" 

Cn 
cn • ~ (h0/2)3 

cl 
L} sin 2ut] (14) 

(15) 

Also a first approximation for the intrusiondepth of the sheetflow 
layer as function of time can be made. Schematizing more rigorously 
than before, the concentration in the moving sheet layer can be as- 
sumed as constant. 
As the pressure increases linearly with the depth the grain shear 
stress also increases linearly and thus (for viscous flow) a parabolic 
velocity distribution is found (fig 5): 

z2 
u = U (1 - -775—) cos ujt when z S H (16) 

rl 

u = 0 when z > H 

where U is the maximum velocity at the top of the sheetflow layer and 
equals the maximum velocity in the wave boundary layer; H is the time- 
dependent intrusion depth or thickness of sheetflow layer given by: 

H = H v/|cos cot| (17) 

where H is the maximum intrusion depth. 
From eq. (lb), (lc) and (16) results for the shear stress: 

,c V3  in-
3/2 

U .z 
T = 4.4 p v t(r-) '  - 1]  ' -ZT- (18) 

w   CQ n 

This is accompanied by a dispersive pressure gradient given by: 



OSCILLATING STREETFLOW DYNAMICS 945 
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Fig.5 Assumed velocity and stress distribution in the sheetflow (anal.) 
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Fig.6 Concentration profiles in the sheetflow (anal, comp.)' 
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Fig.7 Intrusion depth as function of time (anal. comp.). 

Fig.8 Relative grain motion in two adjacent layers. 
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|f =4.4pwv  [(£-) -  1] |T==ta„« (19) 

where a is the angle of internal friction, (tan a = .75; eq (la)) 
Because this pressure gradient must counterbalance the gravity forces 
on the (submerged) grains an expression for H can be found: 

~ / p    V U x 13 _3/2 
H =/ 4.4 - [(—) '  -1]  '  cotan a (20) 

PS"PW c g  c0 

The time-dependent intrusiondepth H is given by eq.(17). 

3.3. Results. 
Figure 6 shows some results of the calculated variation (according 
eq.(14)) of the concentration during half a wave period, compared with 
the measurements of Horikawa et al (1982). In an oscillating water 
tunnel Horikawa carried out a series of laboratory experiments under 
sheet flow condition. The following deals with his experiment 1-1 with 
a period of 3.6 sec and a maximum orbital velocity of 1.27 m/sec. 
Figure 7 gives the intrusion depth (point of zero velocity) of the 
sheet flow layer as function of time, also compared with the results 
of Horikawa et al. The depth H has to be taken, starting from a time- 
averaged bottom level, which is higher than the still bottom level. 
(The zero-level in the plots of Horikawa). The maximum intrusion depth 
is assumed to occur at the time of maximum velocity at level z=0 
(phase angle 6= 60°). The theory would predict "still-water- 
concentration" for 9= 15° (60° minus a phase shift of 45°). This 
tendency also follows from Horikawa1s data and from the numerical 
method treated below (fig 13b). 

4. NUMERICAL COMPUTATIONS. 

4.1. Grain-grain interactions in the numerical model 
In the numerical model the motion of each layer of grains is con- 
sidered separately; each layer exists of a rigid rectangular structure 
of spherical grains (Fig lb). Grain- grain interaction between the 
successive layers occurs in two ways: on one hand viscous interaction 
forces, comparable with squeezing forces in lubrication problems and 
on the other hand direct contact with elastic response when the dis- 
tance between the grains becomes less than .01 of the grain diameter. 
When the relative motion of adjacent layers results into compression 
or dilatation, a resistant force analogous to the Darcy law is assumed 
The viscous interaction forces are reproduced in the following way. 
Let F be the Stokes force, exerted on a sphere, moving with velocity 
u in a fluid: 

F =6irp vuR (21) 
s      w 

in which R is the radius of the sphere. 
Many scientists investigated the increase of this force, when this 
sphere move to a wall, for instance Lorentz (1907).For the behaviour 
of the compression force in the immediate vicinity of the wall. Cox 
and Brenner (1967) find as asymptotic expansion: 
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F/F = e"1 (1- .2e In e + .9712 e ) (22) 
s 

where: e = ex/R (23) 

and ej is the distance between wall and sphere. 
Truncating still earlier, one finds a lubrication limit, attributed to 
Taylor by Ambari et al (1984) 

F/F  = 1/e (24) 
s 

In the numerical model, in the contact points between the grains of 
two successive layers a contact force according to (24) has been 
assumed, where e: is taken as the distance between the spheres. 
This force acts on the grains, resulting in a elastic compression, 
according to Timoshenko and Godier (1951) equal to: 

1/3 

2/3 
As = A F ' (25) 

in which: 

2 2 

( 1 - vc) 
(26) 

E2 R 
where v is the contraction coefficient 
Thus the distance between the centers of two grains becomes 2R - As; 
from the two equations (22) and (25) for F the quantity As may be 
eliminated; F can be related to the distance between the centers of 
the grains of two successive layers. , 
In order to demonstrate the resulting way of collision, fig.9 
shows the motion of the center of gravity y and of the grain surface x 
when a (smooth) sphere approaches a wall, starting with a certain 
velocity; this velocity increases in the various figures a..d. In fig. 
9 '' the sphere comes to rest at a certain distance from the wall, 
eventually after some elastic rebound. In fig 9 the suction forces 
between sphere and wall exceed the cavitation limit of the fluid, 
which liberates the sphere from the wall: an elastic rebound occurs. 

Also in the numerical model for the grain piling a tetrahedral piling 
is assumed.The effect of protuberances is taken into account, with 
direct contact with elastic response when the distance between the 
grains becomes less than .01 times the grain diameter. Fig 8 shows the 
way of motion of the grains. Each grain falls in the hole, shaped by 4 
other grains on a lower level. In the equation of motion in horizontal 
direction sand and water are taken together; in vertical direction 
sand and water are treated separately, where inertia effects have been 
taken into account. With respect to friction, a drag coefficient 
similar to eq. (7) is assumed. 
Apart from the friction, resulting from the horizontal components of 
the pressures in the contact points, viscous friction between the 
various layers is taken into account 

The model of the sheetflow layer disposed here has been combined with 
the near- bottom velocity model, exposed by Bakker and van Kesteren 
(1984). In this implicit model, the shear stress x, at the top of the 
sheet flow layer has been determined from the local velocity gradient: 

x = n ic2z2 U?~ ul |u?~ ul I (27) 
b  PwK Z   Az   '  Az  ' *•  ; 
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where ux is the velocity of the upper sheet flow layer and u2 of the 
first grid point in the (pure) water; the constant K is the von Karman 
constant. The level "z=0" has been chosen at the still- sand level, 
starting from the intuitive feeling that the mixing length KZ should 
be of the order of the vertical motion of the top of the sheetflow 
layer. 

4.2. Results. 
In this chapter the results of the numerical model are compared with 
experiments of Bagnold (1956) and Horikawa (1982) 
Fig. 10 shows the results of a numerical simulation of plain shear, 
applied on grains with the same weight as the surrounding fluid. From 
this the increase of the concentration on pseudo- viscosity can be 
investigated. With the assumption of uniform shear between two paral- 
lel planes the motion becomes symmetrical, thus giving parallel motion 
of all the layers. Thus blocking is found when the grains in the 
layers can not slide between each other without transversal 
displacement. This occurs for a concentration higher than 48 %. 
Furthermore the increase in viscosity agrees rather well with Bagnold 
"s theory and measurements (fig 10). 
However, where Bagnold experimentally finds a ratio between normal 
stress and shear stress equal to .75, the numerical model gives time- 
averaged normal stresses which are much lower. This is about as could 
be expected: for concentrations less than 48 % the grains move 
straight forward without hindering each other too much. 

Fig 11 to 14 show the results of an experiment of Horikawa (1982), 
which has been numerically simulated. 
Fig 11 shows a comparison between measurements and numerical results 
concerning the velocity profile. Fig 11 shows the velocities in the 
various sheetflow layers as function of time; totally 9 layers were 
mobilized. Layer 1 is the upper one. For the elasticity module a value 
of 10 MPa has been taken; however, similar computations with soft 
grains with an elasticity modulus of .1 MPa gave similar results. 
This indicates, that the effect of the viscous squeezing is much more 
of importance than the elasticity. Fig 13 shows the concentration in 
the grain layers; the numerical model "chooses" its own concentration, 
depending on the interaction forces between the various layers. In the 
Horikawa experiment, this concentration is 74 % when the material is 
in rest (densiest packing) and about 60 % when the material is moving. 
The same appears from fig 13 , giving the concentration profiles at 
various times. 
Fig 12 gives the shear stress in the course of time for layer 1 and 
layer 9. Because in this case gravity takes care for vertical shifting 
of the layers (different from the Bagnold case), the pattern.is rather 
irregular. Therefore also the first harmonics are drawn; from this it 
shows, that the result of the analytical theory, a shear stress , 
constant per layer and increasing with the depth is too naive. The 
shear stress as found from the numerical model is not determined by 
the own weight of the grains, but by the shear stress on the surface. 
The result of the Bagnold theory of the constant ratio between shear 
stress and normal stress is checked also in fig 14, giving this ratio 
as it follows from the mathematical model. In the lower layers, which 
keep in rest,  this ratio decreases gradually (starting from .75) 
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because of the increasing own weight. In the higher layers, which are 
in motion, the ratio varies randomly between +10 and -10 
It shows, that the numerical model does not tally quite with Bagnold s 
theory with respect to the dispersive stress.However, the physics of 
the Bagnold theory is not quite clear. 
Indeed, one finds in the viscous region a "transverse pressure 
analogous to that which occurs in the static arching of grains in 
contact ", as stated by Bagnold (1954) ("a transverse dispersive 
tendency of a dense overtaking motor traffic along a one-way road"). 
However, in the numerical model grains moving from each other after a 
"collision" tear the layers from each other, by inertia of the grains, 
combined with viscous forces. This gives tension forces between the 
grains of the same order as the pressure forces. Where the pressure 
forces are more vigorous, the tension forces are more persistent, 
resulting in a very small value of the normal pressure. This appears 
from calculations with simplified models. 
Furthermore dispersive forces are created by the convective terms in 
the equation of motion for the water in the pores between the grains. 
In the numerical model, these terms appear to be only a few percent of 
the shear stress. On one hand this follows from calculations in which 
the convective terms were left out, on the other hand by simplified 
calculations in which only this effect was taken into account. 
From these calculations one finds a timeaveraged vertical pressure 
gradient of the order of magnitude of the energy of the vertical 
motion on the top of the shear flow layer.This vertical motion appears 
to be in the model only a few mm/sec. 
Altogether the impression arises, that the motion on the top of the 
shear flow layer is too small; the motion is too smooth with as a 
result, that the shear stresses are too low and therefore the intru- 
sion depth too small: in the numerical model the intrusion depth is 
1.5 mm and in the Horikawa experiments 5 mm. 
On the other hand Horikawa et al might have overestimated the 
transport somewhat, although this certainly will not explain the 
difference in order of magnitude. 
Before the grains are able to move the grain structure first has to 
adopt a somewhat higher porosity. Therefore the highest point with 
zero amplitude, which determines the lower boundary of the velocity 
profile of the sheetflow-layer will be higher than the highest point 
of zero dilatation (cp. fig 11 and 12). This has not been taken into 
account by Horikawa et al (1982). 

5. CONCLUSIONS. 

Comparing analytical and numerical model with one of the experimental 
results of Horikawa et al (1982) leads to the following conclusions: 
a.The analytical model reproduces concentration profiles and intrusion 

depth reasonably well  (fig 6 and 7)). Assumptions about velocity 
profile and shear stress distribution however are too primitive (cp. 
fig  5 and fig  11  for analytical and numerical computations 
respectively). 

b.Use of the Bagnold theory of constant shear stress ratio in the 
analytical model leads to better approximation of the intrusion 
depth than in the numerical model. The numerical model underes- 
timates this depth. 
However, the physics of the Bagnold theory is not quite clear. 



OSCILLATING STREETFLOW DYNAMICS 953 

Indeed, one finds in the viscous region a "transverse pressure 
analogous to that which occurs in the static arching of grains in 
contact ", as stated by Bagnold (1954). However, in the numerical 
model grains moving from each other after a "collision" tear the 
layers from each other, by inertia of the grains, combined with 
viscous forces. This gives tension forces between the grains of the 
same order as the pressure forces. Where the pressure forces are 
more vigorous, the tension forces are more persistent, resulting in 
a very small value of the normal pressure. 
Furthermore dispersive forces are created by the convective terms in 
the equation of motion for the water in the pores between the 
grains. In the numerical model, these terms appear to be only a few 
percent of the shear stress. 
In the numerical model the ratio between pressure and shear stress 
as found by Bagnold is only a continuous function of depth in the 
region with no significant motion (fig 14). In the sheetflow layers, 
the ratio varies at random between +10 and -10. 
The increase of viscosity as found by Bagnold reproduces rather well 
in the numerical model (fig 10). However, simulating numerically the 
experimental set-up of Bagnold (grains with the same weight as the 
fluid) in the model a total blocking occurs at a concentration of 48 
%, due to a schematization, which is too regular. 

c.Of the two possibilities of the numerical model for transferring 
grain forces from one layer to another: (by "lubrication" or by 
direct elastic contact), the effect of lubrication appears to be the 
most important. This appears from comparitive calculations with 
various values of the elasticity of the grains, which did not have 
much effect on the intrusion depth of the sheetflow 

d.The impression rises, - as well from the velocity distribution as 
from the intrusion depth - that the present numerical model is too 
smooth. In this model the transition between sheet flow layer and 
the uper layer is not yet well reproduced. One might expect here a 
transition layer with high turbulence, as occurs in density 
currents. This will give higher shear stress and higher vertical 
gradients of time- averaged vertical pressures, probably resulting 
in a higher intrusion depth of the sheetflow. 

e.Before the grains are able to move the grain structure first has to 
adopt a somewhat higher porosity. Therefore the highest point with 
zero amplitude, which determines the lower boundary of the velocity 
profile of the sheetflow-layer will be higher than the highest point 
of zero dilatation (cp. fig 11 and 12). This has not been taken into 
account by Horikawa et al (1982). This might lead to overestimation 
of the transport. 

f.A more extensive experimental verification of the theory under a 
broad range of circumstances is needed. For this goal a large pul- 
sating water tunnel is constructed in the Delft Hydraulics 
Laboratory. 
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8. NOTATION. 

a      ,  drag coefficient (eq.(7)). 
A  [ra/N3 s] stiffness parameter in elastic grain deformation (eq.(25). 
b horizontal distance / grain diameter between grains in tetrahedralrectangular 

piling, 
c concentration. 
c„ concentration at maximum density. 
c0 limit concentration in the sheetflow (eq.(15)). 

grain diameter. 
spacing between spheres. 
Youngs modulus of the grains. 
grain interaction force. 
Stokes force (eq.(21)). 
acceleration of gravity. 
vertical distance over grain diameter between centres of adjacent grainlayers. 
value of h in the closest packing of grainlayers in the sheetflow. 
intrusion depth. 
coefficient of permeability. 
Bagnold-nuraber (eq.(2)). 
grain force due to vertical dispersive pressure gradient (eq.(5)). 
mean of p (eq.(6)). 
second harmonic of p (eq.(6)). 
dispersive grain pressure. 
grain radius. 
elastic grain distorsion (eq.(25)). 
effective grain shear stress, 
horizontal velocity 
horizontal velocity at top of the sheetflow. 
vertical coordinate (pas. upwards). 
vertical coordinate of grainlayer. 
vertical length scale in the sheetflow (eq.(12)). 

angle of internal friction. 
spacing between grains over grainradius (eq,(23)). 
phase angle of oscillating motion. 
Von Karman constant (eq.(27)). 
linear concentration (eq.(lc)). 
kinematic viscosity. 
specific density of water. 
specific density of sand. 
shear stress at the top of the sheetflow. 
angular frequency of the oscillating motion. 
time-derivative of x. 
mean value of x. 
amplitude of x. 
dimensionless value of x. 
increment of x. 

D. [mj 
e [ml 
E [N/m'J 
F [N] 
F [N] s 
8 [m/s'l 
h 
ho 
H [m] 
k [m/s] 
N 
P [Pa) 
Po [Pa] 
Pi [Pa] 
P [Pa] 
R [m] 
As [m] 
T [Pa] 
u [m/s] 
U [m/s] 
z [m) 
z [m] 
ZB [ml 
a [deg] 
e 
e [deg] 
K 
X 
V [.'/»] 
Pw [kg/n>>] 
Ps [kg/m»l 
Tb [Pa] 
U) [s-'l 




