
CHAPTER 65 

Grouping Waves and Their Expression on Asymptotic Envelope Soliton Modes 

T. Yasuda1, M. ASCE , N. Nakashima2 and Y. Tsuchiya3, M. ASCE 

ABSTRACT 

An approach, that treats natural sea states with remarkable 
groupiness as random sequences of envelope solitons, is suggested here 
to explain their dynamical and statistical properties from the viewpoint 
that wave packets contained in the states have their own characteristics 
and should be regarded as elementary modes. Some examinations are made 
on its applicability to the temporally observed waves. And the approach 
is shown to be effective also for waves with a non-zero nonlinearity and 
finite spectral band-width. Further, a formulation based on envelope 
solitons is made on the wave drifting force and is shown to be useful 
for analyzing the time series of drifting forces. 

INTRODUCTION 

The wave grouping such as runs of consecutive high waves or small 
waves in nature has been shown to occur more often and to contain more 
waves than would be expected if waves are completely random. The 
potential consequences are often quite significant in both offshore and 
coastal activities. It is well-known, [for example, Spangenberg, 1980] , 
that many moored offshore structures and floating vessels suffer a great 
influence of the wave grouping and their responses become maxima when 
the period of the wave groups is equal to or lies in the vicinity of the 
natural periods of the moored systems. With the progress of ocean 
development and coastal activities, the concern on the wave grouping has 
been grown and various investigations have been made theoretically and 
experimentally on wave grouping characteristics. However, usual- 
investigations in engineering sides are based on the assumption of a 
narrow banded Gaussian process and lack the fact that the wave grouping 
is due to weak but non-zero nonlinearity and should be treated as a 
nonlinear phenomenon, so that they have limits in evaluating dynamical 
characteristics of grouping waves. 

Wave systems that depend on the band-width and nonlinearity may 
exhibit component dispersion ranging from that given by the linear 
dispersion to that of an effectively nondispersive phase-locked system 
in which wave components propagate essentially with a single speed. 
This demonstrates that the Fourier spectrum representation and the 
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associated Gaussian random wave theory do not comprise an entirely 
satisfactory analysis technique forsea states with non-zero 
nonlinearity. Recent researches on waves with a weak nonlinearity and 
narrow band-width [for ex. Yuen & Lake, 1982] made clear that the 
description of grouping waves contained in the wave field provided by 
the nonlinear Schrodinger (NLS) equation and the Zakharov equation is 
qualitatively and quantitatively correct and nonlinear effects on the 
formation of wave groups are significant. It has been already stated 

[Sobey S Colman, 1982] that the envelpe soliton bears a remarkable 
resemblance to the common appreciation of wave groups. However, waves in 
field have spectra with a finite band-width and nonlinear aspects such 
as peaking of wave crests and flattening of troughs, so that it is 
difficult to apply directly the NLS equation to them and some trialstfor 
ex. Stiassinie and Shemer, 1984] using the Zakharov equation has not 
been   applied   successfully   in  describing  them. 

The nature of wave groups in field is a little bit made clear, 
although their natural occurrence is not in doubt. It is not also clear 
whether the wave groups are spatially stable or not and they can be 
regarded as wave packets with soliton properties, that is, envelope 
solitons or not. However, it is the well-known fact that a nonlinear 
wave packet, that is, envelope soliton is a stable grouping although 
linear wave packets are destroyed eventually by dispersion and are 
spatially unstable. It is, therefore, natural to suppose that waves 
after having travelled a long distance are generally in a stable state 
and may have a coherent structure making some stable mode elementary 
excitation and that the stable wave group contained in the waves can be 
regarded as a kind of such elementary excitation. This viewpoint is 
quite different from usual ones interpreting the wave group as a 
consequence of a mere superposition of some carrier waves and a 
stochastic sequence of zero-crossing waves. If the wave group has its 
own characteristics and can be treated as elementary mode of waves with 
remarkable groupiness, an approach for treating the wave group as 
elementary mode may become possible for explaining properties of the 
grouping waves. This approach may be expected to be effective for 
analyzing the time series of the wave drifting force caused by the 
existence  of   wave   groups. 

In this study, by investigating wave grouping characteristics of 
waves observed at various locations, we show that they remarkably depend 
on nonlinear effects and the frequency of carrier waves associated with 
each wave group is not necessarily identical with the peak frequency of 
the spectrum and distributes over a finite band-width. Then, all wave 
groups accompanied with the waves are treated as envelope solitons and 
their envelope profile is represented as a random train of asymptotic 
envelope solitons. Some examinations are made on the applicability of 
the theoretical result to the waves observed temporally at fixed 
positions and the envelope soliton mode representation is shown to be 
possible for their envelope profiles. Further, this representation is 
extended   to   the   formulation  of   the   wave   drifting   force. 

GROUPING  CHARACTERISTICS   OF OBSERVED WAVES 

1.   Spectral  Band-Width  and  Nonlinearity 
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Field data were collected from various observatories locating off 
Gobo coast (Gl-8, Oct. 1979) facing the Pacific ocean, off Ogata coast 
(01-12, Mar. 1981) facing the Japan sea, off Caldera Port in Costa Rica 
(Cl-4, May 1981) facing the Pacific ocean and at Lake Biwa (Bl-10, Oct. 
1975). The data were obtained by the temporal observations of water 
surface displacements at fixed positions. Table 1 summarizes values of 
wave parameters calculated from these data. In the table, 

Table  1 Wave parameters of observed waves 

Data MM) f p u /S~T k.h Ur GF P I **a  
J 2 

Bl 4 0 . 293 .991 .037 1 34 2. 03 .337 . 463 2. 47 5.29 
B2 4 0 . 293 . 989 . 174 1 34 1. 94 . 396 .506 2. 63 5. 27 
B3 4 0 .317 . 990 .310 1 73 2. 01 . 398 . 481 2. 64 5. 38 
B4 4 0 .305 . 990 . 260 1 62 2. 18 . 402 . 494 2. 49 5. 25 
B5 4 0 . 281 . 988 .166 1 43 1. 96 . 393 . 459 2. 85 6. 28 
B6 4 0 . 305 . 988 . 143 1 62 1.61 . 374 . 447 2. 48 5. 57 
B7 4 0 . 322 . 987 . 070 1 77 1.00 . 367 . 474 2. 49 5. 38 
B8 4 0 . 322 . 989 . 096 1 77 1. 24 . 364 . 485 2. 75 5. 57 
B9 4 0 . 440 . 981 .191 3 13 0. 27 .371 . 518 2.9 2 5.62 
BIO 4 0 .440 . 982 . 136 3 13 0.26 . 384 . 459 2. 49 5. 49 
Gl 28 0 . 068 .723 . 020 0 80 3.12 .4 44 . 478 4. 13 8. 29 
G2 28 0 . 064 .772 .073 0 74 3. 12 . 468 . 456 2. 38 5.41 
G3 28 0 .072 .765 .069 0 85 3. 32 . 546 . 522 2. 77 5.45 
G4 28 0 .061 . 768 .093 0 70 2. 94 . 351 . 557 3. 25 6. 50 
G5 28 0 . 064 . 745 .005 0 74 3. 68 . 471 .457 4. 00 7. 14 
G6 28 0 .064 . 720 . 124 0 74 2. 99 . 397 .423 2. 73 7.22 
G7 28 0 .061 . 759 . 049 0 70 1. 99 . 347 . 482 2. 41 4. 33 
G8 28 0 . 065 •. 780 1. 08 0 75 2. 92 .391 . 468 3. 36 6. 70 
Cl 18. 5 .053 . 920 . 323 0 48 9.09 . 411 . 492 3. 56 7. 38 
C2 18 6 .057 .910 . 252 0 52 9.90 . 336 . 529 4. 27 8. 36 
C3 18 2 .057 . 898 . 501 0 51 9. 94 . 455 . 484 3. 21 6.94 
C4 18 1 . 053 . 904 . 689 0 47 15. 5 . 446 . 492 4. 00 7. 93 
01 6. 2 . 1 07 . 981 . 393 0 56 8. 78 .319 . 488 2. 05 4. 27 
02 6 9 .096 . 803 .813 0 53 11.2 . 350 . 441 3. 00 6. 67 
03 6 9 . 114 .811 . 701 0 64 10.1 . 367 . 493 2. 7.7 5. 67 
04 6 9 . 175 . 977 . 489 1 08 4. 71 . 650 . 492 4. 80 
05 6 9 . 175 . 977 . 476 1 08 6. 45 . 770 . 481 4. 80 
06 7. 0 . 175 .977 . 297 1 09 5. 69 .700 . 485 4. 80 
07 6 2 .096 .80 3 . 968 0 50 5. 68 . 740 
08 5 3 .096 . 803 1.12 0 46 5.07 . 780 
09 5 3 .096 . 803 . 845 0 46 4. 02 . 740 
010 6. 2 . 114 . 811 .721 0 60 7. 64 .720 
011 5. 3 . 114 . 811 . 826 0 55 6.23 .730 

012 5 3 . 114 . 811 . 618 0 55 7. 29 . 730 

h   denotes   the   mean  water   depth,   f     the  peak   frequency  of   the  power 
spectra,   v  the spectral  band-width parameter defined by 

y=[l-OT22/C'"omO]1/2 .=J"/-5(/y/  , (i) 

in which f is the wave frequency, k„the wave-number corresponding to fD 

through the linear dispersion relation, /pj the skewness, U the Ursell 

number, GF the Groupiness Factor defined by Funke and Mansard 1979 , p 
the probability of the wave-height H of zero-up crossing wave exceeding 
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the average wave-height H, and Jx the average run length of the zero- 
up crossing waves exceeding H. It is easily noticed from this table that 
all values of v exceed 0.7 and are near unity rather than zero , that 
is, observed waves to be used here have not a narrow but finite spectral 
band-width. The values of skewness /ji1 of the observed waves except for 
G5 exceed 0.01 and indicate that their water surface displacements are 
influenced by nonlinearity. The values of Ur also show that the 
observed waves have a finite nonlinearity in comparison with a frequency 
dispersion. Hence, it may be said from these results that the observed 
waves can not be analyzed on the basis of a narrow-banded Gaussian 
process. 

2. Wave Grouping Characteristics 

GF and qj-, are used here as the criteria representing wave 
grouping characteristics, q is the complementary number of p and is 
defined as 1-p. The value of qj, is unity when the time series of the 
wave-heights of zero-up crossing waves are completely random. Since a 
modulational instability occurs when kh>1.36 in the wave field provided 
by the NLS equation and then envelpoe solitons are formed, kh is used 
here as the instability criterion relating to the formation of envelope 
solitons. Figure 1 shows the relation of GP and qj^ vs. kh. The value of 
qj, is slightly inclined to increase with the increasing of the value of 
1/kh, although varying remarkably in the region of kh<1.36. While, the 
value of GF is almost independent of kh. If wave groups possessed in one 
wave record have the identical carrier frequency with the peak frequency 
f and are governed by the single NLS equation, their envelope profiles 
shoud be flattened when the value of kh falls below 1.36. That is, as 
the value of kh gets to be below 1.36 and further decreases, GF should 
decrease and qj, should increase. However, such a definite trend can not 
be found out and the outward profile of wave groups is supposed to be 
still stable even under the value of kh being below 1.36. It, therefore, 
may be said that wave groups possessed in the waves with a finite 
nonliearity and finite spectral band-width are still stable in the 
region, kh<1.36 and that the wave grouping characteristics are almost 
independent of the value of kh calculated from the peak frequency f  and 
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Fig.   1   Relation  of  kh  vs.   GF   and qj, 
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should be   investigated   in  relation  to  nonlinearity. 

Figure  2 shows the relation of GF and qj- the Ursell number U 
It is easily noticed from the figure that the wave grouping 
characteristics evaluated by qj, and GF definitely depends on the ursell 
number, that is, both values of qj, and GF increase as the value of Ur 

increases until reaching about 8 and then they suddenly begin to 
decrease just after the value of U exceeds about 8. This states that 
the degree of groupiness of random waves with a finite nonlinearity and 
spectral band-width depends on the nonlinearity itself. It, further, is 
imagined that the wave groups once formed are conserved as stable modes 
and may be regarded as elementary modes of waves with a non-zero 
nonlinearity when 0 is less than 5 or 6 and that their associated 
carrier waves turn to a train of solitons when Ur exceeds about 8 and 
then  are  made   stable   . 
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Fig.   2   Relation  of  U     vs.   GF  and  q]^ 

Figure 3 shows the relation between the run length jx and the ratio 
T/f. Where, T is the zero-up crossing period averaged over the 
consecutive high waves 
constituting one wave group, f is 
the zero-up crossing period 
averaged over one record of the 
observed   waves.    If   all wave 
groups included in the observed 
wave can be described by the 
multi-soliton solution of the 
single NLS equation, each wave 
group has the identical carrier 
frequency with the peak frequency 
f and T agrees with f. However, 
it is seen that the ratio T/f is 
not necessarily unity and there 
is   a   definite   correspondence 
between j, and T/T. The period 
of carrier waves associated with 
one wave group becomes larger as 
the   run   length   j,   increases,   that 

6. 00 
Jl 

Fig. 3 Relation between the run 
length and wave period of 
carrier waves of each wave 
group 
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is,  the wave group grows 
accompanies a carrier wave 
other wave groups. 

up.  This says that each wave   group 
with its own wave period independent   of 

ASYMPTOTIC ENVELOPE SOLITON MODE REPRESENTATION 

1. Fundamental Assumptions 

The observed results shown in the preceding chapter revealed that 
the wave grouping depends on Ur rather than kh and can not be 
sufficiently explained by the modulational instability under a narrow- 
band spectrum . This states that the wave groups are formed on the basis 
of nonlinear dynamics and behave as stable wave packets. Hence, we 
suggest an approach to treat them as envelope solitons governed by the 
plural NLS equations, although we can not verify its validity. The 
motive of this approach is based on the viewpoint that waves with 
remarkable groupiness have a dynamical structure making envelope soliton 
elementary excitation. Under the viewpoint, in order to represent them 
as a sequence of envelope solitons of which amplitudes and phase 
constants are random variable dependent on an initial probability, the 
following assumptions are made. 

i) All wave groups possessed in observed waves behave as envelope 
soltons and are composed of the multi-envelope soliton solutions 
of the plural NLS equations. 
ii) The envelope profile of the waves observed temporally at a fixed 
position can be approximately represented as a random sequence of 
asymptotic envelope solitons. 

1=1 

1=2 

A schematic diagram of 
the sea state corresponding 
to these assumptions is 
shown in Fig. 4. The 
diagram explains that the 
sea state is governed 
independently by the L-NLS 
equations having B,- 
envelope soliton solutions 
(l=l,2,...L)and the 
observed waves are composed 1 =L 
of a train of envelope f 
solitons with the number of 
XN, . 

2.   Formulations 

Since the wave data are 
obtained by the temporal 
observations at fixed 
positions as mentioned 
above, the NLS equation of 
spatial evolution type is 
required to analyze them 
and  is  expressed as  follows: 

Synthesized Waves 

Fig. 4 Schematic diagram of wave field 
represented as random train of 
envelope solitons 
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-idAldX+ad*AldF+p\A\*A=0- (2) 

where 

a=(H2)[cg/c-(ghlc-) sech*Kh{l-Kh tanh/O*)],' 

;S=(cosh AKh+&-tmh?Kh)l(\6 smhlKk) 

-(2c cosh*Kh + cg?/[2smh.22Kh(gh-cl)] , 

c = [(glK)tanhKh]1/\ } 

cg=(c/2)[l+2Khjsmh 2Kk], 

X=s2Kx ,       S=s2itf{xlcg-t), 

(3) 

in which K is the wave-number corresponding to the central frequency f 
of a narrow-band spectrum, eA the amplitude of a carrier wave non- 
dimensional ized by K, h the mean water depth, c the wave-celerity, c 
the group-velocity, e the small parameter denoting the degree of 
nonlinearity, x the horizontal coordinate, t the time and g the 
acceleration   of   gravitation. 

The   asymptotic   N-,-soliton   solution   of  eq.(2)   is   written  as 

eAt    2 
~J^- BS 

a» sech[Vpj2a-a„(27tKf/Cg) {x-c0(t-dn)}]i exp(-ipia'nKx) ; 
(4) 

where the parameters with the subscript 1 are the quantities related to 
the envelope soliton with the central frequency f,, 6 the phase 
constant determining the position of the soliton on the temporal 
coordinate, and a the amplitude of the envelope soliton. If all the 
spacings between two consecutive wave groups are enough wide to make 
asymptotic approximation possible, the asymptoic expression based on the 
above assumptions becomes possible. Hence, the leading order profilesn 
of the observed waves with remarkable groupiness are expressed by using 
eq. (4)   and   defining   the   phase   constant a -,   of   carrier   waves: 

1=1 

Mil 
Ki 

cos(Kix—27:fit+ai) (5) 

Similar expressions of horizontal water particle velocity and water 
pressure, which are necessary to calculate the wave drift force etc. 
reflecting   wave   grouping   characteristcs,     can   be    easily    obtained. 

.£, .    . ,    f coshKi(h + z)) 
u=X\tAl\cl\     s.nh^   'j cos(^-2^+ff!) 

.V _ •£ \eAi\ (coshKi(k+z))       ,„       „,,,     , 
H-R-RTX    corf,**   *   «<**-2tf*H")- 

(6) 

(V) 
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The   envelope   profile   R(t)    of   observed   waves   is   expressed   as   a 
sequence   of   M-asymptotic   envelope   solitons,    if   eqs.(4)   and   (5)   are   used. 

R(t) = 2 Rm ,      Rm=am sech [rm(t-8m)] , 
(8) 

The above equation states    that    both    the    envelope    profile    and    the 
associated   carrier   waves   are   governed   by   the   values   of   the   random 
variables,    a    ,    f      and   S    . Hence,    by   investigating   statistical mm m J J 

characteristics  of  these  random variables,   we can make a statistical 
description   both  for    the   envelope   profile   and   carrier   waves   and   a 
simulation   of   random   waves    with   a   given   groupiness.    Probability 
distribution   function   F(R  )    of   the   envelope   profile   R(t)    is   defined   as 
the   probability  of   R(t)   being  below  the   critical   value   Rc   and  expressed 
as 

F(Rc)=p[R<R0] = f — 

x\  ° \n{[l + Vl-(Rmlamyi(Rm/am)} dRm\ £ (l/rm) 
JO / m-l 

(9) 

Since the differentiation of F(R ) by R yields the probability density 
function f(R), a statistical approach becomes possible for runs of 
consecutive high waves by using f(R). 
R     the   critical   value   is   expressed  as 

F*{Ro) = l- | S ^-[ln(l + VI^TI) -lnFm]|/r„ ,        Ym=R0l(2am) ,(10) 

yi=[(2/»/r»){in(i+v'i-yi)-iny„}] , f11) 

where brackets [ ]  denote the integral representation. 

3. Application to observed waves 

In order to represent the envelope profile of the observed waves 
using eq. (8), the values of a , 6 and f governing an envelope soliton 
must be determined from each wave group. Hence, deriving the linear 
envelope function R (t) based on the narrow-band spectrum from the wave 
record band-pass filtered so as to eliminate both frequencies higher 
than 1.5f and lower than 0.5f , we first determine the number of 
envelope solitons possessed in the record and the values of 6 from the 
crest positions expressed by the function R (t). And then, we determine 
both values of a and f so as to minimize the error energy between the 
linear envelpe function RQ(t) and the nonlinear envelope function R(t) 
defined by eq.(8). 

E=[   {R(t)-R<,(t)}*dt <12> 
JO 
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That   is,    both   values   of   a      and   f      are   determined   by   solving   the 
following simultaneous equation with 2M-dimensions. 

dEldami=0,       d£/3/m=0.       m = l,--.,M (13) 

Figure 5 shows some comparisons between the profiles of the observed 
waves and the envelope profiles represented as a train of the envelope 
solitons of which parameters were calculated as mentioned above. The 
comparisons state that the expression based on eq. (8) can be applied to 
the observed waves with a non-zero nonlinearity and remarkable 
groupiness instead of the linear envelope function R_(t) although it 
utilizes R_(t) to determine the values of a , 5  and f . 

Fig.  5  Comparisons between profiles of the observed waves and 
the envelope profiles calculated by the present approach 

Figure 6 shows comparisons between the envelope profile 2R(t) 
calculated by eq. (8) and the temporal variations in wave-heights of 
zero-up crossing waves. It is seen that the properties of the time 
series of zero-up crossing waves can be easily evaluated on the basis of 
eq.(8). This states that the statistical approach briefly shown above 
has a possibility of its application to the observed waves. 
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68.00,       1,96.00 
(sec) 

Fig. 6 Comparisons of a train of wave-heights of zero-up 
crossing waves with the envelope profile represented 
by  the  present  approach 

Figure 7 shows the relation between 
fm/fp and (S/am)/kph. Here, fm is the 
frequency of carrier waves associated 
with an envelope soliton corresponding 
to one wave group and a is the averaged 
amplitude of envelope solitons included 
in one record of the observed waves. It 
is noticed that a functional relation 
equivalent to the regression curve, 
defined  by 

/m//P=0.38+2.55x-0.67a;2+0.07a;3
i 

x=a/Kpham 
(14) 

exists between fm/fp and (a/a )/k h, 
nevertheless,the values of am and f are 
determined only by the conditions shown 
in     eq.(13). This        states        that 
grouping waves in field are governed by 
some dynamics slightly similar to the 
assumpsions mensioned above and the 
value of f can be estimated using 
eq.(14). 

0. 00 2. 00 4. 00 
a/Kpham 

Fig. 7 Relation between peak 
frequencies of the 
observed waves and 
carrier frequencies 
associated with 
envelope   solitons 

As  shown above,   it  is  seen  that the assumptions  i)   and ii)  hold     at 
least   for   the   observed   waves   used   here   and   the   schematic   diagram   drawn 
in Fig.l  reflects  partially a  correct  statement of  the physics of the 
waves   with   a   weak   nonlinearity   and   finite   band-width.    This   states   that 
the   approach  treating  envelope   solitons   as   elementary   modes   can  be 
applied  to  the  waves  with remarkable groupiness.   The approach,   which  may 
be   called  as  the   envelope   soliton  mode   approach,   suggests  that  there   is 
a possibility  to  explain   simply  dynamical   and  statistical  properties  of 
the   waves   and  to   simulate  numerically  waves  with  a  expected groupiness. 
Further,  it is expected that the time  series of grouping waves can be 
analyzed  by   making   clear   the   statistical   characteristics   of   random 
variables   a      and 6„,    instead   of   usual   approach   based   on   the   run   theory mm 
of   zero-crossing   waves   and  the   linear   envelope   function. 
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DRIFTING FORCE BASED ON ENVELOPE SOLITONS 

1. Formulations 

It is well-known that the wave grouping is closely related to the 
slow drift oscillation of moored systems. Pinkster[l975] formulated the 
wave drifting force under the assumption of a narrow-banded Gaussian 
process and showed that the slow drift oscillation is due to the 
resonance between the natural frequency of a moored system and the peak 
frequency of the spectrum of the drifting force. However, waves with 
remarkable groupiness have generally a weak nonlinearity and finite 
spectral band-width and are not suitable for Pinkster's approach based 
on a narrow-banded Gaussian process. Further, Pinkster's approach is not 
effective for evaluating the time series characteristics of the drifting 
force because the spectral analysis itself is not useful for the 
investigation on time domain, .while, the envelope soliton mode approach 
suggested in the preceding chapter is applicable to such waves and 
effective for investigating the time series characteristics. 

A formulation based on the envelope soliton mode is made on the 
computations of the wave drifting force based on the direct integration 
method of pressure acting on the wetted surface of a body with reference 
to Pinkster's approach. Assuming as well as Pinkster that the envelope 
profile of the waves slowly varies and using eqs.(5), (6), (7) and (8), 
we can represent the drifting force F (t) based on the present approach 

^s(.t) =—pg 2 S amanCzD sech [rm(t — 5m)] sech [rn(t-8n)] cos (<uOT-o)«)f , (15) 

where spatial coordinate x is set to be zero for simplicity, and the 
parameters with the subscript m denote the quantities concerned with 
m-th envelope soliton with carrier frequency f , CpD the drifting force 
coefficient to be determined experimentally, u „ the angular frequency 
2irfm, p the density of fluid. 

If each envelope soliton is independent of others, eq.(15) is further 
simplified and is rewritten as 

F/t)=(pg/2)CrBR(ty, 

R(t)= 2 amsech [rm(t-5m)] 
(16) 

This expression states that the time series characteristics of the 
drifting force can be explained in a direct relation with a statistical 
properties of random variables a and § governing dynamically each 
envelope soliton and that the envelope soliton mode approach is very 
effective for investigating the properties of the drifting force in a 
time domain. 
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Characteristics 

In order to investigate the properties of the drifting force 
expressed in eq.(15) and the relation with wave grouping 
characteristics, comparisons of the drifting force are made among Hsu & 
Blenkarn's approach[l972], Pinkster's one and authers' one. Figure 8 
shows the comparison. Here, the value of the drifting force coefficient 
Cp„ is set to be unity commonly for each case. It is found that both 
results of Pinkster and authors do not suffer the influences of small 
deviations independent of wave groups and are superior to Hsu and 
Blenkarn's approach in evaluating the influence due to wave groups 
themselves. The drifting force by the present approach agrees well 
with the one by Pinkster's appoach and the former may be used 
instead of the latter which has been put widely to practical use. 

n 200 

FSH 

340 680 1020 

Fig. 
T(sec) 

Comparisons of the wave drifting force calculated by 
authors  approach with the ones by Hsu and Pinkster 

CONCLUSION 

The approach, regarding an envelope soliton as an elementary mode of 
grouping waves and representing them as a train of envelope solitons of 
which amplitudes and phase constants are random variables, is suggested 
here and is shown to be applicable to the temporally observed waves with 
a non-zero nonlinearity and finite band-width. It, further, is extended 
to a formulation of the wave drifting force caused by the existence of 
wave groups and the fomulation based on the envelope soliton mode is 
signified to be put to practical use as well as Pinkster's one based on 
a narrow-banded Gaussian process. 

The present study containes some debatable points such that the 
intutitive picture shown in Fig. 4 is not verified to be a correct 
statement of the physics of grouping waves and the approach can not 
describe their propagation process because based on the asymptotic 
soliton solutions of the plural NLS equations. In order to establish the 
envelope soliton mode approach, it is required to verify that grouping 
waves in field have a dynamical structure making an envelope soliton an 
elementary mode and overcome the above debatable points. However, it 
should be emphasized that the approach is useful for analyzing the 
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problems mainly dependent on wave grouping characteristics at a fixed 
position, such as the slow drift oscillation of moored systems. It, 
further, is supposed to be effective for evaluating simply statistical 
properties of grouping waves and simulating numerically waves with an 
expected groupiness because parameters governing each envelope soliton 
are random variables expressing directly wave grouping characteristics 
and statistical quantities concerned with carrier waves and zero- 
crossing waves can be written as functions of the parameters. 

As mentioned above, the approach suggested here remains some points 
to be examined. But it can be stated at least that the envelope soliton 
mode approach has a possibility to carry out a new statistical 
description on waves with a remarkable groupiness. 
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61550368 from the Ministry of Education, Science and Culture. 
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