
CHAPTER 55 

Biperiodic Waves in Shallow Water 

Norman W. Scheffner*. Member ASCK 

Introduction 

The propagation of waves in shallow water is a phenomenon of 
significant practical importance. The ability to realistically pre- 
dict the complex wave characteristics occurring in shallow water 
regions has always been an engineering goal which would make the 
development of solutions to practical engineering problems a 
reality. The difficulty in making such predictions stems from the 
fact that the equations governing the complex three-dimensional flow 
regime can not be solved without linearizing the problem. The 
linear equations are solvable; however, their solutions do not 
reflect the nonlinear features of naturally occurring waves. A 
recent advance (1984) in nonlinear mathematics has resulted in an 
explicit solution to a nonlinear equation relevant to water waves in 
shallow water. This solution possesses features found in observed 
nonlinear three-dimensional wave fields. 

The nonlinear mathematical formulation referred to above has 
never been compared with actual waves, so that its practical value 
is unknown. The purpose of the present investigation was to physi- 
cally generate three-dimensional nonlinear waves and compare these 
with exact mathematical solutions. The goals were successfully 
completed by first generating the necessary wave patterns with the 
new U.S. Army Engineer Waterways Experiment Station, Coastal 
Engineering Research Center's (CERC) directional spectral wave 
generation facility. The theoretical solutions were then formed 
through the determination of a unique correspondence between the 
free parameters of the solution and the physical characteristics of 
the generated wave. 

* 
Research Hydraulic Engineer, U.S. Army Engineer Waterways 

Experiment Station, Coastal Engineering Research Center, 
Vicksburg, Mississippi, USA 

724 



SHALLOW WATER WAVES 725 

Theoretical Background 

One of the first mathematical models of nonlinear waves in 
shallow water with known solutions was presented by Korteweg and 
deVries in their famous 1895 paper. Their model, known as the KdV 
equation can be written in the following nondimensional form 

ft + 
6ff + f 

X     XXX (1) 

in which f represents the water surface displacement, x is the 
direction of wave propagation and t is time. This equation admits 
not only solitary wave solutions but also the periodic solutions 
commonly known as cnoidal waves. These solutions can be written as 

f(x,t) 2tr2k2cn2(6;k) 2 a 
E(k) 
K(k) 

- 1 + •3 (2) 

where each of the terms in the solution are well documented analytic 
functions which can easily be computed in terms of known wave 
characteristics such as wave height and wavelength. Unfortunately, 
cnoidal wave solutions are valid only for long crested waves, e.g., 
waves which can be described by a single time-dependent one- 
dimensional surface wave pattern. .Natural waves, in contrast, are 
composed of both long and short crested waves and cannot be 
adequately described by this theory. 

A recent advance in nonlinear mathematics has been reported by 
Segur and Finkel (1984). They present explicit analytical solutions 
to a natural three-dimensional extension of the KdV equation 
proposed by Kadomtsev and Petvlashvili (1970), known as the KP 
equation shown below 

(fx + 
6ff + f  ) + 

XXX x 
3f  =0 

yy 
(3) 

where x now represents the primary direction of propagation; 
however, weak changes in the y-direction are now permitted. When no 
y-variations occur, the KP equation reverts to the KdV equation. 

The KP equation admits an infinitely dimensional family of 
exact, periodic, solutions (see Dubrovin 1981 and Segur and Finkel 
1984) which can be written in the form 
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f(x,y,t) '- 2 i-l£i (4) 
3xZ 

where  6 is a Riemann theta function of genus n .  Genus 1 solu- 
tions are exactly equivalent to cnoidal waves, they are permanent 
form, singly periodic, two-dimensional (one vertical and one 
horizontal) nonlinear waves.  Genus 2 waves are biperiodic in that 
they permit the independent specification of two periodicies in both 
time and space. The solutions are genuinely three-dimensional, 
nonlinear, and propagate with permanent form at a constant 
velocity. Genus 3 and higher order solutions are multi-periodic and 
cannot be characterized as permanent form with respect to any 
translating coordinate system as the genus 1 and 2 solutions can. 
This present investigation is limited to the genus 2 solutions 
developed by Segur and Finkel. 

The construction of a genus 2 solution of the KP equation is 
based on the specification of the appropriate Riemann theta 
function. This requires the introduction of a two-component phase 
variable and a 2 X 2 real-valued Riemann matrix. The first of 
these, the phase variable, is shown below. 

^ = UjX +  \>yy + o)xt +  <|>10 

and (5) 

*2 = V2X +  V +  V +  *20 

Where the parameters y. , y- , v. , and v„ are wave numbers,  ID. , 
and u.  are angular frequencies, and  <|>  and  <)>„_ are constants 
with no dynamical significance.  The second ingredient involves the 
specification of a real-valued, negative definite, symmetric 2X2 
Riemann matrix as shown below. 

bX 
B=l      2    1 (6) 

LbX bX + At 

The parameters b , d , and  X represent solution non- 
linearity. The genus 2 theta function.can now be defined in terms 
of the above components by the following double Fourier series: 

00 00 

9C ^ ,<}>2 ,B)  -   ^jT ^    exp(y m-B-m+im.ij)) (7) 
m. ——oo      m~——°° 

The calculation of a general case genus 2 KP solution requires 
the specification of the 11 parameters shown in Equations 5 and 6. 
Two of these parameters (i(>lri and i{>9n) have no dynamical signifi- 
cance, their only effect is to shirt the origin of the resulting 
solution.  Dubrovin (1981) proved that a genus 2 theta function in 
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the form of Equation 7 was a solution to the KP equation if, and 
only if, the solution parameters were related by four additional 
equations.  One of these equations contains a constant of 
integration.  Use of this additional criteria reduces the number of 
free parameters to 8, representing the minimum number of free param- 
eters required to specify a general case genus 2 solution. 

Genus 2 solutions of the KP equation describe a complex two- 
dimensional surface wave pattern.  Similar features were observed by 
Hammack (1980) to result from the nonlinear interaction of two 
intersecting waves.  The theoretical development by Segur and Finkel 
was partially prompted, in fact, by these reported waves. The devel- 
opment of an experimental program which would result in the genera- 
tion of surface wave patterns qualitatively similar to genus 2 solu- 
tions was achieved by attempting to experimentally reproduce the 
conditions reported by Hammack, i.e. intersecting waves. This 
generation technique can best be described by presenting the analogy 
of interacting waves.  Consider, for example, two periodic waves 
which intersect and pass through each other as shown in Figure 1. 
The angles a.  and a„  represent the angle of the crest of each 
wave front with respect to some reference line. The resulting sur- 
face wave pattern, according to linear wave theory, would simply be 
a superposition of the two individual waves. This would produce a 
diamond shaped surface pattern as indicated in Figure 1.  It can be 
seen that certain of the basic characteristics of the individual 
waves, wavelength and angle of propagation for example, have been 
preserved. 

WAVE GENERATOR WAVE GENERATOR 

Figure 1, The Linear 
Intersection 
of Waves 

Figure 2. The Nonlinear 
Intersection 
of Waves 

Now, consider the analagous case in which similarly intersecting 
waves interact nonlinearily with each other. This scenario is shown 
schematically in Figure 2. The resulting wave pattern shows that a 
"stem of interaction" is formed at the point where the two waves 
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cross each other. The formation of this stem region is a result of 
a phase shift in the crest line angles of the original waves.  This 
phenomenon is shown in Figure 2 superimposed on the corresponding 
linear wave solution.  The resulting surface wave pattern now 
assumes a hexagonal pattern in which a third wave crest, separate of 
the original two, is formed. This phase shift and stem formation 
are indicative of the nonlinear interaction of the two waves since 
the exact linear solution does not predict either the phase shift or 
the new wave crest. Genus 2 solutions of the KP equation predict 
these features and was tested as a possible model for their 
description. 

Laboratory Facilities and Experimental Procedures 

A project was initiated at CERC to generate three-dimensional 
nonlinear wave fields in the laboratory and then to apply KP theory 
to the resulting waves in order to determine whether or not the KP 
equation was a model for these waves and, if so, what was the range 
of its applicability. This required the use of the CERC directional 
spectral wave generation facility. This unique wave generator, 
shown in Figure 3, was designed and constructed for CERC by MTS 
Systems Corporation of Minneapolis, Minnesota, based on design 
specifications provided by CERC. The generator is comprised of 60 
individually programmable electromechanical wave paddles.  Each wave 
paddle is 1.5 ft wide making the generator a total of 90.0 ft in 
width.  The generator is located in a 98.0 by 184.0-ft wave basin 
with 2.5 ft high side walls.  Computer control of the system is 
provided by a Digital Equipment Corporation (DEC) VAX 11/750 central 
processing unit. The above facilities were utilized to generate 
genus 2 candidate waves in a comprehensive experimental program. 

Figure 3. The Directional Spectral Wave Generator 
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The wave generator was programmed to simultaneously generate 
intersecting cnoidal wave trains. A variety of wave fields were 
generated by varying both the wavelength of the Individual waves and 
their angle of intersection.  Twelve wave fields, generated in this 
manner, were used to test the KP equation. The wave fields selected 
for the experimental program are presented in Table 1. Waves 
characterized by three wavelengths (7, 11, and 15 ft) were combined 
with phase shifts between adjacent wavemaker paddles. These phase 
shifts were approximately equivalent to the angle of the wavecrest 
with respect to the axis of the wave generator.  The angle in the 
table shows the approximate correspondence between the phase lag and 
the angle of propagation. 

Table 1 
The Exper imental Waves 

Test Wavelength Phase Shift 
Number (ft) (deg) Angle (di 

7.45 

2g) Period (sec) 

CN1007 7.0 10.0 1.378 
CN1507 7.0 15.0 11.21 1.378 
CN2007 7.0 20.0 15.03 1.378 
CN3007 7.0 30.0 22.89 1.378 
CN4007 7.0 40.0 31.23 1.378 

CN1011 11.0 10.0 11.75 1.947 
CN1511 11.0 15.0 17.79 1.947 
CN2011 11.0 20.0 24.04 1.947 
CN3011 11.0 30.0 37.67 1.947 

CN1015 15.0 10.0 16.12 2.553 
CN1515 15.0 15.0 24.62 2.553 
CN2015 15.0 20.0 33.75 2.553 

Genus 2 solutions can be visualized as a series of repeating two- 
dimensional permanent form surface patterns, referred to as period 
parallelograms. These patterns translate at a constant velocity in a 
constant direction.  The global wave field is represented by a tiling 
of these basic patterns; therefore, the entire wave pattern can be 
exactly specified by quantifying just one period parallelogram. The 
location of a basic period parallelogram within the hexagonal wave 
field of Figure 2 is shown in Figure 4. The phase variables of 
Equation 5 define the horizontal limits of these patterns such that 
each side is uniquely defined by $.   = constant and $    = constant. 
The components of the Riemann matrix define the vertical and horizontal 
distribution within the period parallelogram. 



730 COASTAL ENGINEERING-1986 

Period Parallelogram 

Direction of Propagation 

Wave Generator 

Figure 4. The Period Parallelogram 

Detailed measurements of each of the generated wave fields shown 
in Table 1 were required in order to relate the physical charac- 
teristics of the waves to the parameters of the corresponding period 
parallelogram of the exact solution. This quantification was accom- 
plished by first using overhead photography to determine the dimen- 
sions of the period parallelogram and to provide an estimate of the 
internal features, such as the phase shift and stem length. 
Knowledge of these horizontal features and their location within the 
wave tank were then used to locate a linear array of 9 recording 
wave gages in the wave basin. This approach provided a vertical 
wave record which could be identified with a known location within 
the parallelogram. 

Comparing Theoretical Solutions To Observed Waves 

The experimental program described above generates symmetric 
cnoidal waves  (a. = a in Figure 1) resulting in a symmetric period 
parallelogram. This simplification was adopted so that the 
generated wave patterns would propagate perpendicularly off the face 
of the wave generator, making it possible to measure all wave forms 
with a single stationary wave gage array.  Symmetry also reduces the 
number of free parameters which need to be specified, for example, 
u = \i-   ,  v. = -v„ , and u = <u from Equation 5. This simpli- 
fication results in the requirement of only three dynamical parame- 
ters and two nondynamical parameters.  The parameters chosen were 
b , y , and X along with the phase shift parameters <|> „ and <j> 
The following sequence of events was used for optimizing these 
coefficients. Experiment CN3007 will be used to demonstrate the 
verification process. 
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Each of the waves of Table 1 were generated in the wave basin. 
Two overlapping photographs were taken with duel Hasselblad model 
500EL/M 70mm cameras equipped with 50mm lenses mounted 23 ft above 
the floor of the basin. The resulting mosaic photograph, shown in 
Figure 5, was used to estimate the length and width of the period 
parallelogram. This resulted in estimates for y = \i      and 
v. = -v. . An estimate for the phase shift parameter X was also 
determined from the photograph. The accuracy of |i , v , and X is a 
function of the distortions in the photograph. Because of this 
distortion, their values were considered to be initial estimates. 
Following the photographing of all waves, a wave gage spacing of 
2.5 ft apart and 40.0 ft from and parallel to the generator was 
selected for use in all tests. The location of each of the gages 
with respect to wave CN3007 is shown in Figure 5.  It can be seen 
that each gage can be uniquely referenced according to a distance 
from the center of the parallelogram.  Since all parallelograms are 
identical, wave gages located in an adjacent parallelogram can be 
referenced to the common center point. 

Figure 5. Overhead Mosaic Photograph of Test Wave CN3007 

Wave gages were located in the basin and each of the waves of 
Table 1 were regenerated. Data was sampled for each of the gages at 
a rate of 50 samples per second for a total of 30.0 seconds. 
Figure 6 shows the wave traces for one period of wave CN3007. The 
correspondence between the wave traces and their location within the 
parallelogram can easily be seen. For example, gage 5 is located on 
a stem where only one peak per passing of the parallelogram is 
experienced. Gage 3 is located in the saddle region where two 
smaller peaks per period are seen. This comparison demonstrates the 
usefulness of the photographs in interpreting the data since three- 
dimensional effects are difficult to deduce from two-dimensional 
data. 
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CNOIDAL TEST CN3007 

4      6AGE # 1 r   GAGE #2 _    6AGE # 3 
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Figure 6. Wave Gage Traces for Test Wave CN3007 

The determination of the free coefficients can now be made. 
Known or estimated data are the period of the wave (determined from 
the recording wave gages), the length and width of the period 
parallelogram and an estimate of the phase shift parameter X 
determined from the photographs, and a maximum wave height selected 
from the wave gage data. The following iteration procedure was used 
to optimize the coefficients: 

The estimated values for y JJ„ and X were specified. The 
nondynamical parameters $^ „ and <j> _ were accounted for by specifying 
solutions to be computed at location within the period parallelo- 
gram corresponding to the location of the wave gages. A value of 
b was then selected such that the dimensionalized maximum KP 
solution was within 5.0 percent of the measured value. 
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b. The value of u. = u9 was adjusted, if necessary, until the 
dlmensionalized period was within 3.0 percent of the measured 
period. 

c. The value of X was adjusted, if necessary, until the dlmen- 
sionalized value of v. = -v. was within 10.0 percent of the esti- 
mated value. A 10-percent criteria was used for this iteration 
since the length of the parallelogram was difficult to determined 
from the photographs. 

d.  Because of the nonlinear coupling of the solution coeffi- 
cients, each adjustment affected all parameters to some extent.  If 
corrections were found to be necessary, steps (a.) through (c.) were 
repeated until all of the specified tolerances were 

CNOIDAL TEST CN3007 
ZETA/IIYIAX ZETA] 
- COMPUTED 

MEASURED 

MAX ZETA (CMP) = 0.394 
DEPTH [FT] = 1.000 
Z.*PI/NU (FT) = 17.028 
2.*PI/MU (FT) = 7.854 
PERIOD (SEC) = 1.378 
MAX ZETA (OB-IN) = 3.239 

EASE * 9. r - 150 FEET 
•MS ERROR - 0.077 

GAGE • 8. r ' 1.00 FEET 
RMS ERROR • 0089 

EASE » 7. r ' 3.50 FEET 
RMS ERROR • CL209 

GAEE • S. / = 6.00 FEET 

RMS ERROR = 0.095 

GAGE • 5. r - 8.50 FEET 
RMS ERROR = 0.263 

GAGE « 4. y = 800 FEET 

RMS ERROR = 0.112 

GAGE » 3. r - 3.50 FEET 
RMS ERROR = 0.193 

GAGE » 2. r • 100 FEET 
RMS ERROR = 0.093 

GAGE »\.y 1.50 FEET 
RMS ERROR = 0.187 

AVERAGE RMS ERROR = 0.113 

Figure 7.  Theoretical and Measured Wave Profiles 
for Test Wave CN3007 
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met or exceeded.  Possible phasing problems regarding the gage 
locations within the parallelogram were rectified by adjusting the 
nondynamical phase parameters. 

e. A KP solution corresponding to the location of each of the 
wave gages was calculated. A normalized plot comparing theory to 
measurements was made, as shown in Figure 7 for the present 
example.  Included in each plot is the Root Mean Square (RMS) error 
for each comparison. 

f. A normalized contour plot (Figure 8) and a three-dimensional 
plot (Figure 9) for each wave field was finally prepared as a visual 
example of the KP solution. 

„MMmM 
0.0 X 

0 CONTOURS 

CONTOUR LEVELS FROM  .600 TO 1.00 
CONTOUR INTERVAL OF .200 

6.0 ft 

Figure 8. Normalized Contour Plot for Test Wave CN3007 

y -*- 

Figure 9.  Three-Dimensional Plot of Test Wave CN3007 
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The above procedures were followed for each of the test wave 
fields of Table 1. A minimum tolerance of 5.0 percent for 
waveheight, 3.0 percent for period, and 10.0 percent for the 
Y-direction wavelength was maintained for all experiments. Table 2 
presents those computed results. For each case, an average RMS 
error is provided which represents a simple average of the 9 RMS 
values computed for each gage.  In no case did this error exceed 
20 percent even though variations in the elevation of the basin 
floor of 10 percent were known to exist. Additionally, the 
experimental wave fields were generated almost to the point of 
breaking in order to span the range of solution parameters and 
investigate the limits of applicability of the genus 2 solutions. 
In view of these introduced and existing sources of potential error, 
the degree of fit between the generated wave fields and the exact 
solutions were found to be very good. 

Table 2 
Computed wave parameters 

Test Max. Height X-Wavelength Y -Wavelength 
Number (in) (ft) (ft)     A\ 

46.5 

re. RMS Error 

CN1007 2.44 7.0 0.141 
CN1507 3.59 7.2 35.1 0.188 
CN2007 3.06 7.5 27.3 0.150 
CN3007 3.24 7.9 17.0 0.143 
CN4007 3.30 8.7 13.6 0.184 

CN1011 2.23 10.7 48.0 0.174 
CN1511 2.87 11.1 40.3 0.122 
CN2011 3.10 11.6 27.6 0.126 
CN3011 2.48 12.6 20.7 0.172 

CN1015 2.65 15.0 59.3 0.120 
CN1515 2.84 16.1 32.6 0.094 
CN2015 2.86 17.1 29.0 0.098 

Conclus ions 

Twelve separate nonlinear wave fields were generated for the 
purpose of verifying the KP equation to be an accurate model for 
three-dimensional nonlinear waves.  Criteria were developed which 
provided a unique correspondence between the solution parameters of 
the KP equation and the physical characteristics of the laboratory 
generated waves.  Results of these experiments showed that both the 
generated waves and the genus 2 solutions are remarkable robust in 
that both were stable over a wide range of parameters, including the 
near breaking of waves. The excellent degree of fit between the 
observed and computed solutions shows that genus 2 solutions of the 
KP equation represent a viable model for three-dimensional, 
nonlinear, shallow water waves. 
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