
CHAPTER 51 

Approximate descriptions of the focussing of water waves 

D.H. Peregrine* 

Abstract 

Underwater shoals and spurs focus water waves that propagate over 
them. The normal theoretical approach to finding a more accurate 
solution of the linear equations is to interpret the envelope of 
crossing rays as a cusp of caustics (see Figure 1) and to use Pearcey's 
function (Pearcey 1946).  In practical cases the ray pattern is rarely 
sufficiently well defined to enable the cusp parameters to be deduced. 
An alternative approach is presented in which a length of wave crest 
heading towards the focussing region is approximated by an arc of a 
circle or parabola (Figure 2). Corresponding approximate solutions for 
linear and weakly nonlinear waves are described. 

1.  Introduction 

For calculating the refraction of waves the usual method is to use 
ray theory.  It is a common occurrence to find points in wave ray dia- 
grams where rays cross.  The point where rays start to cross is usually 
a focus at the cusp of two caustics.  This is illustrated in figure 1. 
It is unusual to obtain very clear examples in practice and if only a few 
rays cross a higher density of rays is needed to clarify the ray 
structure. 

Focussing of rays is an indication that ray theory has become 
invalid. An improved method of solution including at least some diffrac- 
tion effects is necessary.  One approach is to determine the positions 
of caustics and use Pearcey's (1946) solution for the cusps of caustics; 
another approach is to use a parabolic approximation;  a third method is 
to solve a fully elliptic form of the wave equation. 

Here two simple approximations for finding the wave amplitude at 
the focus are presented.  Both represent the focus as a single point 
where an angular spread of waves meet as sketched in figure 2.  It is 
much easier to estimate such an angle than to fit an appropriate caustic 
cusp.  The boundary of the focussing wave is also important.  Here we 
suppose that an initial wave crest is made up of a circular arc of angle 
2a, radius R, smoothly joining straight crests representing plane waves 
as sketched in figure 2.  Uniform initial amplitude is assumed. 

One approximation is based on an exact linear wave solution and 
includes diffraction effects.  The other is based on an exact solution 
of a weakly nonlinear parabolic equation for refraction, the nonlinear 
SchrSdinger equation.  The approximation includes the major nonlinear 
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Figure 2. A circular wave focussing at a point, bounded 
by plane waves. 
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diffraction effects but neglects some of the linear diffraction. 
The results are different.  It appears that both are likely to give 
upper bounds on wave amplitude.  Both are easy to evaluate once a,    R 
and the initial wave amplitude A^ are known. The smaller value can 
be taken as an estimate of wave amplitude at the focus. 

2.  A linear solution 

We consider only water of constant depth, h, and a single Fourier 
component in time. That is a time variation e'i^t is implicit. The 
wave equation to be solved is then 

V2? + k2? = 0 (1) 

where k is the wavenumber given by 

ID
2
 = gktanh kh (2) 

and ?  is the, complex, surface elevation.  Introduction of polar 
coordinates  (r,6)  permits expression of the general solution of 
equation (1) in the form 

Z =    y (a cosnS + b sinn6)J (kr), (3) 
n=0 n        n      n 

where J  are Bessel functions. 
n 

Now take the origin at the focal point of a wave system, and 
consider a circle of large radius R, such that kR » 1.  Then for all 
values of n such that n « kR the terms of the series (3) can be 
divided into incoming and outgoing waves by using an asymptotic formula 
for Jn, for example see Abramowitz and Stegun (1964) equation•(9.2.1). 
In particular: 

J, 
J (kR) a (2/irkR) cos (kR - W 
o 

" (2trkR)  (exp i (kR - his)   + exp[-i(kR - hit)]}. (4) 

When combined with e"*ialt the first exponential term in (4) gives an 
incoming wave, the second term gives an outgoing wave. 

At the origin the only non zero term in the Fourier-Bessel series 
(3) is the JQ term, thus we only need to evaluate aQ to find the 
wave amplitude there. To evaluate the Fourier coefficients we suppose 
that on the circle radius R the amplitude and phase of incoming  waves 
is known as a complex function of 6, say A(9).  Then the usual Fourier 
series evaluation of coefficients and the expression (4) give 

A(9)de = 2ira (27TkR)  exp i (kR - Vrr) . (5) 
-IT 

As an example consider the plane wave 

ikx  _  ikrcosO 
C = A,e   = Aje 
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This gives 

„,a,   ,  ikRcosS  _    , 
A (6) = A e        for -Vrr <  6 < ^ir 

. I (6) 

= 0  for  | 9 I i ijir. 

The integral of equation (5) becomes 

eikRcos6de = (2lT/kR)!sexp i(kR - h-n), (7) 

to the same level of approximation as the asymptotic formula (4) for 
J , and thus equation (5) gives aQ = A,  as is expected. 

Now consider the wave field sketched in figure 2:  that is an arc 
of a circle of angle 2a of precisely focussed waves bounded smoothly 
by semi-infinite plane waves. For simplicity let their amplitude at 
radius R have constant modulus Aj  and continuous phase.  The con- 
tribution to the integral of equation (5) of the two semi-infinite 
plane waves is the same as that of a single plane wave, though spread 
over a different range of angles.  The contribution of the focussing 
arc is simply 2aA exp(ikR)  leading to 

aQ = AJ{1 + cc(2kR/TT)V
tllTh (8) 

Thus |a0| = A {1 + 2o(kR/ir) } (9) 

after neglecting terms of an order, k2R2, already neglected in the 
asymptotic result (4). 

3.  Nonlinear Schrodinger equation 

Parabolic approximations are well suited to modelling a focus.  A 
brief derivation for the simple two-dimensional wave equation, 

_1_ 3fu = j^u + 3^u 

c2 3t2   3x2   3y2 

illustrates the nature of the approximation made.  Equation (10) can be 
rewritten: 

( 3     . S\  ( 3 3 \ 23  u ,,,> 
fe+C3xjfe-C^> =  c2^ <"> 

The first operator on the left-hand side expresses the fact that waves 
can propagate in the +x direction, and the second operator relates to 
propagation in the -x direction. 

Near a focus most waves are propagating close to one direction, 
say the +x direction. Thus 

/   j-\ i       * i(kx-uit) .... u(x,y,t) = a(x,y)e       , (12) 

where k = ui/c (13) 
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should be a good first approximation. The exponential describes almost 
all of the "wavy" behaviour in the x direction.  Hence one expects 

ka » |2- . (14) 
ax 

Substitution of (12) into (11) gives 

-id) + lck + c TT— l-iu - ick - c TT—\  a = cr  .       (15) W V =w ay2 

The inequality (14) implies that the x derivative in the second 
operator of (15) may be neglected compared with the sum of the other 
two terms, which is -2ick after using (13).  The equation then reduces 
to 

2i 3a , 1 32a  n ..... 
-r- -r~ + -5-—5- = 0 16) k 8*  k2 8y2 

which is the parabolic wave equation (also known as the one-dimensional 
Schrodinger wave equation). For a derivation directly related to water 
waves see Radder (1979). 

Using the full equations for irrotational water waves Yue and Mei 
(1980) showed that the appropriate extension of equation (16) for 
weakly nonlinear water waves (equivalent to third-order Stokes waves) is 

2±^ + J^^±.  Kk2|a|2a = 0. (17) 
k 3x  k2 3y2 

This is a nonlinear SchrSdinger equation (NLS equation) in which 

K = 
c,9- 12P2 + 13Pk   ~  2P6 (18) c   9 - 12p2  +  13p4  - 2P

6 

c 
g 

i    c 

p - kh(l  - p2) 

2p 
c 

g 1 + kh(l - p2: 1 
where p = tanh kh and 

Note, a(x,y)  is still the complex amplitude of the first approximation 

.  , i (kx-(ot) 
a(x,y)e 

A further approximation aids interpretation of solutions of the 
NLS equation.  Substitute 

a = AelS (19) 

in the NLS equation (17) , where A and S are real 'functions of 
(x,y).  Separate real and imaginary parts.  Introduce 

D = k2A2 and v = r |£ • (20) 
k ay 

A little algebra and differentiation then gives 

D + (Dv)  = 0, (21) 
x     y 
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+ w    + hKD    =   (A    /k2A)   . (22) 
y y        yy       y 

The final term in equation (22) includes three y derivatives and is 
thus only important in rapidly varying parts of a solution. If it is 
neglected equation (22) becomes 

v + w + hKD    =  0. (23) 
x    y 

By substituting a time variation for the x variation in equations, 
(21) and (23), they can be recognized as the nonlinear shallow-water 
equations with the role of gravity being taken by ^K/and D and v equiv- 
alent to the depth and the velocity respectively. 

Equations (21) and (23) have two sets of characteristics 

§£ = K^KD)*2 + v (24) 
dx 

which corresponds to a splitting of the rays in linear theory, see 
Peregrine (1983). 

4. A nonlinear focussing solution 

Following the qualitative description of focussing given by 
Peregrine (1983) numerical solutions of the NLS equation (17) with 
initial conditions corresponding to the focussing in figure 2, were 
studied. These solutions all showed that where focussing waves were of 
a uniform amplitude at the initial value of x the amplitude remained 
uniform in y varying only with x in a substantial region approach- 
ing the focus. An example may be found in figure 3 of Stamnes et al 
(1983). 

A solution corresponding to amplitude being independent of y is 
easily found.  For waves of initial amplitude A  at x = R, focussing 
at x = 0, it is 

a(x,y) = AjfR/x) exp i{y2/2kx - Kk3A2R log(x/R)}.        (25) 

This solution is singular and unrealistic at x = 0.  However, one 
effect of nonlinearity is that there is "defocussing", and the effective 
focus may occur before the geometric focus.  This feature can be deduced 
from the characteristics corresponding to solution (25) which are shown 
in figure 3. The characteristics also show that the singularity at 
x = 0 is due to wave energy coming in from waves originally at un- 
realistically large values of  |y|. 

For any initial region of focussing at x = R the corresponding 
domain of dependence is limited to a region with x > x > 0. Within 
this domain of dependence solution (25) is likely to be a good approx- 
imation.  The characteristics of (25) are given by 

y = ±AIk(2KRx)
!5{(x/x )h  - 1}, (25) 

where x , the position at which y = 0, identifies pairs of character- 
istics. The particular characteristics which bound a domain of depend- 
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Figure 3.  Some characteristics of the approximation (21) and 
(23) to the nonlinear Schrc-dinger equation for the 
solution (25A  The boundary of a domain of dependence 
on initial conditions is outlined. 
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ence of waves from an angle of     2a     at 
(x,y)   =   (R,   aR)     into   (26)   which gives 

x = R,  are found by substituting 

(27) 

1  + 12. 

kA   (2K) 

Unless there are more waves focussing to the same point, x = x 
becomes the effective focussing position, and the corresponding value 
of amplitude at that point is 

i(x 0)| = &(i +  -2—J4 
^    kA1(2K)

!2/ 
(28) 

The NLS equation (17) can be scaled to give an identical equation 
by using the transformation 

= a/a , = aTC, (29) 

Thus any one numerical solution can be interpreted in a number of 
different ways.  In particular, some results of computation are shown 
in figure 4.  The amplitude of numerical solutions along y = 0 is 
given for the scaled values A* = 1, R = 5, and aR = 3,10 and 20, where 
k has been set equal to one.  Examples of alternative values for these 
three cases are given in table 1, where L is wavelength and H is 
wave height. 

Table 1. 

kA (H/L)x kR R/L a 

0.1 .032 500 80 3.4° 11.5° 22.9° 

0.05 .016 2000 318 1.7° 5.7° 11.5° 

5. Discussion 

Two simple formulae for the maximum amplitude are given.  From 
section 2 

la I = A {1 + 2a(kR/irK} (30) 

and from section 4. 

if1 + ~^-T} L\ kRl (2K)^J 
(31) 

These are different and this difference is due to the different approx- 
imations.  Expression (30) arises from attempting to include all the 
linear diffraction effects and is expected to be useful for waves of 
small steepness, even at the focus.  On the other hand expression (31) 
arises from an approximation which neglects some linear diffraction 
effects, i.e. the third-order terms in equation (22) but does include 
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Figure -4. Variation of amplitude of waves along the axis of a 
focus.  Numerical solutions of the NLS equation (17) 
compared with the solution (25) shown in a heavy curve, 
with crosses marking the values of x0, equation (27), 
corresponding to the numerical examples. 
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the defocusslng effects of nonlinearity. 

Both the linear diffraction and nonlinear defocussing spread wave 
energy so that the singularity at a focus that arises from the ray 
approximation does not happen in practice.  Both expressions (30) 
and (31) neglect some of the energy spreading so that both of them 
are likely to be upper bounds on wave energy.  To see how they may be 
used consider a situation where the wave geometry, kR and a, is 
fixed and the initial steepness is allowed to vary, that is Aj 
increases from zero.  Initially the linear expression (30) is the lesser 
value;  for zero amplitude waves the nonlinear effects are not relevant, 
but as steepness increases the two expressions become equal and for 
steeper waves nonlinear effects are more important and hence expression 
(31) is the least.  This is sketched in figure 5.  The initial steep- 
ness at which the two expressions are equal is 

kA1 = (2ir/kRK) \ (32) 

Interestingly, but perhaps in retrospect not surprisingly, this critical 
steepness is independent of a.  As an example, if R is 100 wave- 
lengths and 
is 0.06 or 

K = 3, kh 1.0, then the critical wave steepness kA, 

(H/L)L = 0.018. 

a 
ft. 

1~ 

0 

linear 

A* 
Figure 5. Variation of the linear and nonlinear expressions for 

amplitude at a focus with the initial wave steepness. 
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There are limitations in these expressions.  They are derived for 
water of constant depth of initially uniform amplitude.  Nonetheless, 
the author is not aware of any other simple estimates for wave amplitude 
at a focus and hopes that they may still provide a rough guide in 
practical situations for assessing the importance, or unimportance, of 
regions where ray theory shows that waves focus. 
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