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LIMIT WAVES ON HORIZONTAL SEA FLOOR 
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ABSTRACT 
A numerical solution to periodic nonlinear irrotational surface gravity 
waves on a horizontal sea floor is developed using an iterative Bound- 
ary Integral Equation Method (BIEM).  This solution technique is subse- 
quently applied to determine the characteristics of limit waves for 
which the wave crest theoretically ceases to be rounded and become 
angled with an included angle of 120 degrees. 

INTRODUCTION 
Analytic wave theories (1,2,3) have shown that for large waves, non- 

linear effects become important and wave theories that account for some 
of these effects give more accurate results.. Most of these wave 
theories are based on the solutions to the irrotational monochromatic 
wave problem on a horizontal bottom. Application of the numerical 
results provided by Dean's stream function solution (4), which 
is of this type, is presently being recommended in the Shore Protec- 
tion Manual (5) to determine forces on piles, although high order 
Stokes solutions have also been used. The Dean's stream function and 
similar solutions (4,6,7,8), are based on truncated Fourier expansions 
for which the accuracy of the solution decreases as the wave height 
approaches limit wave conditions. A limit wave has a stagnation point 
at the crest and, as shown by Stokes (9), the wave crest is sharp and 
includes an angle of 120 degrees. 

A solution to limit waves based on the transformed (complex poten- 
tial) plane and including terms to specifically account for the crest 
flow has been given by Williams (10). His solution consists of combin- 
ations of periodic motion modes and the mentioned crest terms.  Since 
the solution is performed in the transform plane all but the dynamic 
surface condition are satisfied. A collocation technique satisfying 
the dynamic condition at discrete nodal points is used to determine the 
mode amplitudes.  The number of modes required for accurate results and 
convergence depends on wave steepness and depth and was determined 
through empirical trial and error.   Although the mode amplitudes have 
been calculated for a number of different wave conditions the applica- 
tion of the results is somewhat cumbersome and interpolation does not 
seem straightforward. 

The numerical solution described here offers an attractive alterna- 
tive method for determining limit wave parameters.  The method is 
convergent and explicitly accounts for wave set-down. 

The Boundary Integral Equation Method (BIEM), (11) solves a govern- 
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ing differential equation (e.g. Laplace equation) by evaluating the two 
principal dependent variables on a given physical boundary. The basic 
concept employed stems from the application of Green's theorem and the 
resulting boundary method is now firmly established as an important 
alternative technique to the prevailing numerical methods of analysis 
in continuum mechanics. The efficiency of the BIEM is attributed 
primarily to the fact that in non-linear problems with an unknown free 
surface which must be determined through interaction, it is much easier 
to move a few nodes on the surface for each iteration than it is to 
update an entire spatial grid. 

In this study, a numerical solution for limit waves by means of 
the BIEM technique is developed.  It is obtained in a coordinate system 
translating at wave phase speed and in which the wave motion consequent- 
ly is steady.  The limit waves considered here are monochromatic and 
periodic. They are assumed to be irrotational and symmetric around a 
wave crest plane.  The limit wave under these conditions is taken as 
the wave with crest particle velocity equal to the celerity, according 
to Stokes criterion (9). Although Benjamin and Feir (12) have question- 
ed the stability of a periodic solution, this study does not intend to 
elaborate on this aspect of the problem, but accepts it as a valuable 
working assumption. 

THEORETICAL FORMULATIONS 
Two-dimensional periodic surface gravity waves at the non-breaking 

limit are considered as shown in Figure 1. With horizontal coordinate 
x' and vertical coordinate z', the origin is on the bed and moves with 
the same speed as the waves so that in this moving frame all motion is 
steady. When the assumption of an incompressible fluid and irrotation- 
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Fig. 1  Definition sketch. 
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al motion are incorporated, the steady-state solution is represented by 
a velocity potential function satisfying the Laplace equation, i.e. 

vV = 0 (1) 

The velocity potential (<)>') is defined in terms of velocity compo- 
nents u1 and w1 in the moving frame as 

a*' 
  - u' - u - Cb (2) 

3x' 

3<(>' 
  = w' = w (3) 

3z' 

in which Cj, is the speed of the limit wave and u, w are the velocity 
components in the corresponding fixed frame (here and in the following 
we use ' to designate variables measured in the translating coordinate 
system). The kinematic boundary condition applies to both the free 
surface and the bottom, i.e. 

w' = 0 z1 = 0 (4) 

3n  w' 
— = — z' = n(x') (5) 
3x'  u' 

where n is the free surface displacement. 

The dynamic boundary condition on the free surface is given as 

n + — [u'2 + w'2] = B z' = n(x') (6) 
2g 

in which B is the Bernoulli constant and g is the gravitational con- 
stant. 

In this study, we are specifically searching for limit wave solu- 
tions and therefore impose a further condition that the particle velo- 
city at the crest equals the wave phase speed. This yields the well- 
known result that the crest has an included angle of 120 degrees and 
the fluid in the vicinity of the crest is characterized by a 120 degree 
corner flow (9), i.e. 

— I   = - tan"1 - (7) 
3x'             6 

x'-0 

It is noted that solution of regular non-limit waves can be ob- 
tained in a very similar manner to the one described here by eliminat- 
ing eq. (7) and specifying a value for B, see Lu (13). 

The celerity CD is obtained from the second definition of wave 
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celerity by Stokes  (1),   i.e. 

l    n 
Cb = - - /    u'   dz'   . (8) 

d o 

where d denotes the water depth. 
There exists a close relationship between the celerity and the 

overall volume transport.  If Q' is defined as the total volume rate of 
flow underneath the steady wave per unit width, it and the wave 
celerity Cb are related by 

Q» = - d(Cb - Cs) (9) 

in which Cs is the average mass transport velocity. If pure wave motion 
is assumed to cause no overall volume transport of fluid (i.e., Cs=0), 
then Cb = -Q'/d. 

The water depth, d*, is determined so that the crest area equals the 
trough area, or 

/ n(x') dx' = d* (10) 
o 

in which Lb denotes the limit wave length. 
Based upon the assumption of irrotationality and periodicity, the 

mean water level is always depressed due to existence of waves (14). 
The mean water level obtained by eq. (10) is lower than the undisturbed 
water level.  The difference Ad is defined as set-down.  The set- 
down can be determined by (see Lu (13)) 

1 3<|>'       3<(>' 
Ad [ -C\  + ( )2 + ( )2 ] (11) 

2g 3x'       3z' 
z=n(x') 

where overbar denotes the spatial average over a wave length along the 
free surface. 

BOUNDARY INTEGRAL EQUATION METHOD (BIEM) 
The boundary value problem defined through eq. (1) to eq. (7) can 

be transformed into an integral equation on the boundary only as deli- 
neated by Brebbia and Wrobel (15). Thus, the potential at a point p is 
given by 

3<(> 3<)>* 
c<(,(p) = / — **dr - / <f> dr (12) 

T 3n       r  8n 

where 3<J>/3n and §  are the unknown independent variables, (normal 
derivative and velocity potential, respectively) and principal value of 
integrals is implied. The value of c is: c=l for an internal point, 
c=0 for an external point, and c=0.5 for a boundary point on a smooth 
boundary. When the surface is not smooth at the point p, c can be 
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computed from eq. (12) by setting ty -  constant over the whole domain 
r is the boundary domain, <(>* is the fundamental solution (Green's 
function) of a concentrated potential at a source point q as determined 
from the equation V2<t>* + 6(q) = 0 (6(q) is the dirac delta function). 
For a two dimensional plane problem, the fundamental solution is <j> 
= ln(l/r)/(2ir), where r is the distance from the source point to the 
integration point on the boundary. It is noted here that <j) and 
3<|>/3n are two independent variables on the boundary domain since 
3<j>/3n cannot be determined from §  on the boundary only and vice versa. 

For a well posed problem it is sufficient that one of the variables, 
<j> or 3<|>/3n be prescribed along every boundary segment.  In a numerical 
solution, the boundary is divided into a number of elements and the in- 
dependent variables are described by discrete values at element nodes. 
Consequently a matrix form in terms of $ and 3<|>/3n can be written 
and solved by applying eq. (12) at each node.  Once, both nodal velocity 
potential and normal derivative, §  and (3<j>/3n) are known everywhere 
on the boundary, the velocity potential and velocity components can be 
calculated at any interior point as described by Ligget and Liu (16). 

NUMERICAL FORMULATION AND SOLUTION 
The numerical solution is obtained in the translating coordinate 

system in which the wave is staionary and symmetric around the wave 
crest plane. Thus, the model domain need only be half of the wave 
(i.e. ABCD) as shown in Figure 1. 

In the mathematical problem the location of the surface, n(x'), is 
not known a priori, but must be determined as part of the solution 
through the use of conditions (5) and (6).  In the present numerical 
solution an initial location of the free surface is guessed, the dyna- 
mic surface condition is imposed and an iterative technique is develop- 
ed to change the position of the surface until the kinematic condition 
is also satisfied. 

Because only wave length and wave crest elevation can be chosen 
independently, the problem geometry can be characterized by only a 
single dimensionless parameter, £ = ratio between the limit wave 
crest elevation and limit wave length, making it easier to numerically 
cover the full range of possible conditions,. 

Boundary Conditions 
Because the wave crest is a stagnation point, the Bernoulli con- 

stant B = nc, where nc is the crest elevation.  The dynamic free 
surface condition then becomes 

vs = [2g(nc - n)]1/2 (13) 

where Vs is the tangential velocity along the free surface. Eq. (13) 
can therefore be used to determine the velocity potential along a given 
free surface by performing a line integration along contour AB with the 
curvilinear coordinate y. 

Y 
^(Y) = / Vs dr + ^| (14) 

A A 

Taking <£' in the crest plane equal to 0 and noting y  = y(x') 
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a Dirichlet condition is obtained, 

<(.' = <^(x') on Vi (15) 

A Neumann condition at the bottom is defined by the kinematic bottom 
boundary condition 

w* = — = 0 on T3 (16) 
3n 

The assumption that waves are propagating without changing form implies 
that in the crest and trough planes vertical velocity components are 
zero, hence, <j>' is constant 

<(>' = 0 on T4 (17) 

$' = <|>T on V2 (18) 

where 4>-p obtained by eq. (14) is the velocity potential at the trough. 

Initial Estimate of Surface 
A cubic polynomial conforming to the known slopes at both ends 

(-30 degrees at the crest and 0 degrees at the trough) and passing 
through the crest and an arbitrarily chosen trough is used as the 
initial surface.  Subsequently, the surface is discretized into a 
number of elements. 

Numerical Schematization 
For best possible fit a number of quadratic isoparametric elements 

are used along the free surface, while normal quadratic elements are 
used on the rest of the boundary. The nodes are located at the ends 
and the middle of these elements and have values of $i  and 3<j>i/3n 
associated with them, where j=l,2,3...n and n denotes the total number 
of nodal points. 

Because the gradients are expected to be greater near the crest a 
variable element length is used with elements smallest at that location. 
Extensive testing showed that a total of 96 boundary elements provided 
a reasonable compromise between cost of computation and accuracy. The 
same grid was used for all computations regardless of the value of 5. 

Surface Iteration Technique 
Based on the initial surface the BIEM can be executed. The 

results will in general not satisfy the kinematic boundary condition, 
but can be made to do so by changing the surface. 

A convergent iteration technique based on "influence" solutions 
and a Newton-Raphson method is developed to perform the surface updat- 
ing automatically.  The technique first computes the change in the 
kinematic condition residual for unit changes in the elevation of each 
surface node and organizes the influence solutions in a Jacobian matrix. 
Based on the current residuals the Jacobian is then used in conjunction 
with a Newton-Raphson method to determine the optimal change to the 
elevation of each surface node. Because of the nonlinear nature of the 
problem, the Jacobian should in theory be computed every time the 
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surface is changed, however, we have found that in practice the 
Jacobian does not change much after the first few updates and need not 
be recomputed. 

The iteration technique is continued until an error measure in the 
kinematic boundary condition defined as 

62(8) 
3n 

3x' 
(19) 

is below a threshold value. We have chosen this threshold value to be 
on the order of the round off errors of the method on the 36 bit UNIVAC 
machine employed for the computations. A flow chart of the solution 
method is shown in Fig. 2. 

7;(x') = i7{x') + £77(x') 

ATJfx) 

INPUT  DATA 

•Lb-^c 

INITIAL  GUESS 
77U') 

BIEM   SOLUTION 

FINAL  SOLUTION 

Fig. 2 Flow chart of the BIEM technique. 

RESULTS 
A unique limit wave is obtained with the BIEM for each discrete 

value of £.  (The uniqueness is confirmed by choosing two different 
initial guesses of surface and obtaining an identical final solution.) 
However, in practical applications the crest height and wave length 
necessary to determine £ are usually not known. The known or more 
easily obtained parameters are undisturbed water depth (d) and wave 
period (T) . Our results can be made more amenable to practical appli- 
cations by determining a relationship between £ and the single di- 
mensionless parameter, d/L , with L =gT /2ir.  In addition, it will be 
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very,useful to establish relationships for Lb/L0, Hb/L0 and r\c/"L0 

as functions of d/L0 to make possible direct calculation of limit 
wave length, wave crest elevation and wave height. Due to the assump- 
tion of limit waves unique relations can be written as 

Lb/LQ = f!(d/L0) (20) 

nc/L0 = f2(d/L0) (21) 

Hb/LQ = f3(d/L0) (22) 

and 

?/L0 = f4(d/L0) (23) 

The functions f j , f 2, f3 and f4 are determined numerically from our 
results as described in the following. 

Based on the BIEM solutions and for each doublet (nc, Lb) the 
limit wave height Hb can be calculated by Hb = nc-rit> where n^ is 
the surface elevation at the trough. Furthermore, the undisturbed 
water depth can be calculated from 

2   Lb/2 1 3,),'       3<)>' 
d /  TI(X') dx' + — [ -C2 + ( )2 + ( — Y-  ]       (24) 

Lb o 2g 3x'       3z' 

in which the first term is the mean water level with waves and the 
second term is the correction for wave set-down. 

Invoking the second definition of phase velocity (zero transport), 
the phase velocity is determined by 

Cb = - Q'/d (25) 

in which Q' is the volume flux in the moving frame. Then, the wave 
period is determined by T = Lb/Cb. Consequently, four dimensionless 
doublets (Lb/L0, d/L0), (nc/L0, d/L0), (Hb/L0, d/L0), and (£, d/L0) 
are obtained for each BIEM solution. The relationship among these 
dimensionless parameters is plotted as shown in Figs. 3, 4, 5, and 6. 
Thus, for each given wave period and undisturbed water depth the input 
data, 5> f°r tne BIEM and the resulting limit wave length, wave height 
and crest elevation can be determined immediately. 

A measure of the error committed in the kinematic boundary condi- 
tion used by Dean (4) is defined by 

N 
E2 = [ I    e2(e)

2 ]1/2 (26) 

in which N is the number of sampling points along the wave profile and 
£2(9) is the error at each sampling point.  Comparison of E2 between 
the BIEM solution with 96 discretized boundary elements and those com- 
puted by Dean (4) for other existing wave theories is shown in Fig. 7. 

It should be noted that the present solution satisfies the dynamic 
surface condition "exactly" while the other solutions have errors in 
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the dynamic condition.  Except for very shallow water the BIEM using 
96 boundary element provides results with an order of magnitude smaller 
error. This error could of course be made arbitrarily small by using 
more elements and a computer with higher precision. Direct comparison 
with Dean's stream function solution is not possible because it satis- 
fies the kinematic condition exactly while containing errors in the 
dynamic condition, however, due to the previously mentioned convergence 
problems significantly better results should be expected from the BIEM 
solution. 
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Fig. 3 LD/L0 versus d/L0. 

The results obtained for Hj,/L0 as function of d/L0 (figure 6) may 
be compared with the theoretical value derived by Michell (17) and Miche 
(18) who found Hb/L = 0.142 in deep water and Hb/L = .140 tanh (d/L) in 

intermediate depth water respectively. Due to numerical limitations 
that the theoretical limit of infinitely deep water cannot be calculat- 

ed with BIEM approach. The deepest case calculated in this study 
corresponds to d/L0 = 0.7 and the corresponding Hb/Lb = 0.140. 

Note that these expressions use the nonlinear wave-length which is 
greater than L0. An earlier study has indicated a ratio between deep 
water limit wave length and linear wave length of 1.2, (4), while our 
results yield a value of 1.186 for d/L0 = 0.7. As a further verifica- 
ation of our BIEM solutions comparison is also made with the results by 



546 COASTAL ENGINEERING-1986 

d/Ln 

Fig. 4  nc/
Lo versus d/L0. 

Fig. 5 Ht,/L0 versus d/L0. 
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Fig. 6  5 versus d/L0. 

d/L0 

Fig. 7  Comparison of analytic kinematic criterion for limit waves 
(Dean, 1974) 
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Schwartz (6), Cokelet (7), and William (10) for three different d/L^. 
As is shown in Table 1, the solution obtained by the BIEM technique 
agrees with the results obtained from these three different limit wave 
solutions. 

d H H H H 

Lb Lb Lb Lb Lb 

(Schwartz, 1974)  (Cokelet, 1977)  (Williams, 1981)  (BIEM) 

0.3665        0.1380 
0.0355 
0.0168 

Table 1:  Comparison of limit wave height for various water depths. 

CONCLUSION 
A numerical solution for periodic nonlinear irrotational surface 

gravity limit waves is developed by means of the Boundary Integral 
Equation Method (BIEM). The formulation for limit waves employs Stokes 
limit criterion. 

The BIEM solution theoretically satisfies exactly the Laplace 
equation, the dynamic surface boundary condition, and Stokes limit 
criterion, although any numerical solution will contain finite discre- 
tization errors.  Solution compliance with the kinematic surface condi- 
tion is forced by iterating the surface until any error is made arbi- 
trarily small.  The final surface is taken as the true limit wave. The 
wave properties including the dimensionless maximum wave height can be 
determined as functions of a given water depth and wave period.  For 
the cases considered involving 96 boundary elements and iterating to an 
error E2 < 10- one solution requires approximately 45 minutes of CPU 
time on a UNIVAC 1100/81 system. 
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