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Nonlinear Theory on Particle Velocity  and Pressure 
of  Random Waves 

Yi-Yu Kuo*  and Hwar-Ming Wang** 

ABSTRACT 

In this paper, to the third approximation, we used the Fourier- 
stieltjes integral rather than Fourier coefficient to develop a weakly 
nonlinear theory.  From the theory, the nonlinear spectral components for 
water particle velocity and wave pressure can be calculated diretly from 
the directional spectrum of water surface displacement.  Computed results 
based on the nonlinear theory were compared with that of experiment made 
by Anastasiou (1982).  Furthermore, in accordance with the different 
characteristics of wave properties, such as wave steepness, water depth 
and so on, the nonlinear effects on wave kinematic and pressure properties 
were extensively investigated by using some standard power spectra. 

1. INTRODUCTION 

To the first approximation, ocean waves can be described as a super- 
position of statistically independent free waves which have random phases 
and satisfy the linear wave theory.  More recently, however, it has been 
found by many investigators that these spectral components of ocean waves 
do not necessarily follow the linear wave theory, especailly in the shallow 
water areas.  Several nonlinear random wave theories were developed by, 
such as  Phillip  (1960), Hasselmann (1962), Weber (1977) and Masuda(1979) 
et al.  But their description were mostly confined to the spectrum of 
water surface displacement. 

The studies on random and nonlinear characteristics with respect to 
the wave kinematics and pressures are seldom discussed.  Hudspeth (1975) 
developed a simulation method to determine the uni-directional second- 
order sea surface characteristics; however, in his report the water par- 
ticle kinematics are computed by the digital linear filter technique. 
Following the nonlinear wave theory developed by Longuet-Higgings (1963), 
Sharma (1979) proposed a second order directional wave theory by using di- 
screte frequency component to predict the wave kinematic and dynamic pro- 
perty.  In the present study, for similar work but to the theird order 
approximation, we used the Fourier-stieltjes integral rather than Fourier 
coefficient to develop a weakly nonlinear theory for wave kinematics and 
wave pressures. 

2. FORMULATION 

For irrotational motion of an incompressible fluid, there is a vel- 
ocity potential $(x,z,t) governed by 

V2<H5c,z,t)=0 (1) 

Here x=(x,y) is the horizontal co-ordinates, z is the vertical one and t 
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is the time.  The solution of (1) with the condition that $ vanishes as 
z=-h is given by 

»i w-^ ^\   \     cosh k (h+z) iy, , . 
? x,z,t =    'n'i,  e AdA K 2 ]   cosh|k|h 

where K denotes (w,k).  u is angular frequency, k is wave number vector, 
the increment dA(K) is a random variable and X=kx-wt is the phase.   The 
integration is over the entire U) and k space.  In the same way the surface 
displacement r) can be expressed as 

=\ elXdB(K) (3) n(x,t)4 . 
JK 

Substituting with equation (2) and (3) in the kinematic boundary condi- 
tion at water surface, and using the series expasion 

cosh{|k| (h+z)} , i,|  ^ .1,1, li,i2 2   ' I ' i, - = 1+ k z tanh k h+- k  z +... 4 
cosh|k|h      ' '      ' '  21 ' 

we can find the relationship between dA(K) and .dB (K) to the third order 
as 

^^Ikltanhlk!^' 
id) -k k 

+ f  |k||k ItanhdklhltanhdkJhl-^^l'138^-^) 
JK_      1 i 

(5) 

+\K\K   |k|tanh{|k|h}{jlkll +VK2 

k. (k1+k2)k1. (k3+k2) 

" | k | | k1+k2| tanh{ | k^ | h} tanh{ | k +k2 | h J 

dB (K ) dB (K2 ) dB (K-I^-I^) 

2.1 water particle velocity 
The increment of water particle velocity is also defined by 

Q=\  dqelX (6) 
JK 

However, the particle velocity vector Q can be obtained by taking  the 
gradient of velocity potential $.  Therefore, from the equations (2)  and 
(6), we have 

*i(h+z)W) (7> H,   , i fkl cosh{ 
cosh k 

where dq is the increment of horizontal water particle velocity. 
Substituting equation (5) into equation (7), we obtain 

dqH(K,z)=f1(K,z)dB(K)+f  f2(K,K1,2)dB(K1)dB(K-K1) 
JK

I 

V  f (K,K ^zJdBtK^dBdC^dBdCK^K^ 
K, JK_ 
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where f1(K,z) 
oik cosh{ |k| (h+z) } 

Ik!sinhlklh 

u).k<k,k >   (u-w1)k<k,k-k > 
licosh{|k|(h+z)} 

(K K    z) =  1I   l l 1   , ,   hcoshi k 

2l   '   1' 2'tanh|k^|h    tanhl|k-k   |h}I   sinh|k 

0) k cosh{ |k| (h+z) } 
f,(K,K   ,K    z)=        . 

3 12 sinh k h {|lkil2+l*iM*2l<W 
I k | | k]_+k21 <kx ,kx+k2><k ,k1+k2> 

tanh|k.|h tanh{Ik.+k,|h} 
(9) 

Here <k,k' >sk.k' / |k| | k'|  denotes the cosine of the angle formed by this 
vectors k and k'.  For further development, let the increment dB(K)  is 
represented as the sum of primary component dB (K), second component 
dB2 (K) and so on.  However, following a previous study (Masuda et al 1979), 
dB2(K) and dB3<K) can also be expressed in terms of dB^(K).  Taking  the 
mean square value of the increment dqH and using the definition of power 
spectrum 

53!•Vi^(K)5(K+K.) (10) 

we finally obtained the horizontal water particle velocity spectrum <f>^  as 

<f>^(K,z)=f1(K,z)f1(-K,z)<j>1(K) 

f   (K,z)f1(-k,z) 
+2L    W(K)W(-K)  <fv2(K,Kl,}   VKl>VK-VdKl 

JK1 

+4\        w(k)'Zf2(k'kl'Z){£V2(k-kl)}   WV^^l 
JK1 

+2f    f2(k,k1,z)f2(-k1,-k1,z)<|):L(k;L)<|>]L(k-k1)dK1 

JK1 

+41KWW f2(k-kr2){fv2'k-ki--ki' 

+fv2 (k-k1(k) }(()1 (k)^ (kx) dK 

+2\     f   (-k,z){f3(k,k   ,-k,,z)+f   (k,k k,z) 

+f3(k,k,k1,z)}<t>1(k)(()1(k1)dK1 

f   (k,z)f   (-k,z)     fv   (k,k1) 
+2[     7—. {2     „   ,—-+fv, (k,k  ,,-k   ) 

JK W(k) W(k-k   ) 3 l'     l' 

+fv 3(k,k1,k)+fv3(k,k,k1)}())1(k)())1(k1)dK1 (11) 
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where 

w(K)=g>|tanh|klh (12) 

1  2     2     <k'V 
fv-,(K,K )=-{co -0)10, -HO -WO)  ,2^V=2

W -^l^r^tanhdklhjtanhdkjh) 
<k,k-k > 

-to(a)-u1) 
tanh | k | h ,tanh{ | k-k^ | h} 

<kT,k-k > 

1 tanh fk.-, I h tanh{ I k-kn I h) 

<kT,k-k > 
-10, to-to,)       . h     |,    ,..„„/1,.  ,.   ki (13) 

0)   |k   |       u   |k 
fvflCKwK-^L     , I,   L + 3VIW 1' 2' 4ltanh|k|h tanh|k2|h 

i     ,   lkil lk2!   , 
2  1  2  tanh|kx|h tanh|k2|h 

1 to r      i,     ,2        i,     ,2 

.,_ to1<k1,k1+k2> 0J2<k2,k1+k2> 
--(u),-K0_) Ik  +k„|{—-—r-T-—r--—+ -——T-r,—IT— } 2     1     2   '   1     21     tanhIk   |h tnah|k2|h 

4   ik|tanh|klh{a>llkll   +C0
2l

k
2l    } 

to <k   ,k +k 
kl+k2l{  tanh|^|h 

1 lklHk
2l   

<kl'k2> 

"2M(ul+a)2) —[kl tanh|k|h 

<k,k,+k > 
O), | 1     2  

+2'l    2'tanhlk.Jh  tanh{|k  +k2|h} 

VVW W2<k2'kl+k2>   i 
tanhIk.|h tanh|k   |h       ' 

<k,k,> <k,k  > 
+ • W2lkf{iIn^T tanhlkjh tanh|kJh 

1 0)^2 Ik-kJ 
+2~ tanhlk^h  tanh|k2|h

{tanh{|k-kjh}%k_kl><k2 'k_V 

|k-k2| 
ftanh{|k+k   |hrVK  "K2^K2'K  "V + •  • n, \   |hl

<kTk -k0><k,,k -k„>} (14) 

In equation (11) , the first term on right is the linear component and the 
others are nonlinear components. <j> (K) is the first order spectrum. 
Although usually difficult to obtain, the first order spectrum can often 
be replaced by the total power spectrum to compute the nonlinear compon- 
ents approximately (Masuda at al 1979).  It is clear that, based on equa- 
tion (11), the nonlinear spectral component of horizontal particle velo- 
city can be calculated directly from the directional spectrum of water 
surface displacement. 
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On the other hand, from the equation (2) and (6) for vertical velo- 
city component, we have 

, V„  , i|k|sinh{|k| (h+z>}  , , 
dq (k,z)=-l—I  | ' | '  -dAK 15 

cosh|k|h 
V 

where dq is the increment of vertical water particle velocity.  Srmila- 
rily, using the' same procedure described above, we can obtain a formula 
to calculate the nonlinear spectral component of vertical water particle 
velocity.  This formula is just as same as the equation (11) except that 
the functions f , f„ and f are completely different from equation (9). 
The functions for vertical velocity spectrum are shown as follows 

, Iv     , id) sinh{[k| (h+z) } 
fl(K'Z) sinh|k|h  

, cu |k|<k,k > 
f,(K,Kn,z)=-f{- 2s   '   1' '  2' tanh k  h 

(u-OJ. ) |k|<k,k-k >,• .  r I I     -, 
1 ' ' ljsinhj | k| (h+z) J 

+ tanh{|k-k |h}   sinh|k|h 

f I, , ,   ,_ jU sinh{|k|(h+z)} r, (K,^ ,K ,z)=-l , , . .  
i 12        smh k h 

{Tlkil2+lkillk2l<krV 
|k||k1+k2|<k1,k1+k2><k,k +k2> 

~ tanh|k.|h tanh{|k +k |h} 
(16) 

2.2 wave pressure 

Neglecting the Bernoulli's constant, we have the Bernoulli's equation 
as 

-S4<v#,2+H-° 
Here the increment of wave pressure dC(K) is defined by 

-5=f dC(k,z)elX (18) 
P JK 

(where p is the dynamic wave pressure, and p is the water density). 
Substituting the equation (2) into equation (17), we can obtain 

dC(k,z)=fP(k,z)dB(k)+r  f^(k,kn ,z)dB (k) dB (k-k 
IK 2    1' 1' 

f 3 (k,kx ,k2 ,z) dB (kx) dB (k2) dB (k-kj^-k )        (19) 
KllK2 

where 
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2 
fP(K,Z)=

W  C°Sh{ 
1       k sinh 

(h+z)} 

, (oa)n<k,k > <i)(w-w1)<k,k-k.>   ,ri,i,, , ,i 
fp(K K -)-     f    .  X i    1. .    1 iCosh{|k|(h+z)} 
2  ' 1'   "2ltanh|k1|h  tanhi|k-k||h   sinh|k|h 

1 <krk-k > 
2^1^ "V ^  tanhlkjh  banhllk-kjh}' 

nh{|k-k | (h+z)}  sinh{|k | (h+z)} 

sinh{|k-k1|h} sinh[k   |h 

(ixo cosh{ |k| (h+z)} 
£3(K-K1-K2'Z)- |k|sinh{|k|h} {llkll +Ik1|[k2|<k2,k2> 

|k H^+k^k^+^Xk^+k^oyo., 

(1 

tanh|k1|h tanh{|k +k |h}    |k | 

<k,k-k> |k-k Ik 
    1  '   l1 2 

tanh{|k |(h+z)}tanh{|k-k |(h+z)} tanh|k2|h 

inh{|k-k1 | (h+z)} sinh{ | k | (h+z)} 

sinh{|k-k |h }     sinh|k [h 
(20) 

In the same way, by using of perturbation expasion of 'dB(K) and the 
definition of power spectrum, the formula for calculating the nonlinear 
spectral  component of wave pressure can be obtained.  This formula is 
also as same as equation (11) except that the functions f., f2 and £3 
must be replaced by functions fj, fP, and fP (equation (20)). 

3.  COMPARISON WITH EXPERIMENTAL RESULTS 

An experimental result concerning water particle velocities is used 
to verify the above nonlinear theory.  The measurement was made by Anast- 
asiou  (1981) in laboratory random waves by using Laser Doppler anemometry. 
The random waves were simulated by using the spectral form of Pierson- 
Moskowitz type . 

„  on    -0.740) 

S(a,)=2l£L1exp( jJ!) (21) 
U 0) 

and generated by an irregular wave maker. 

Figure 1 shows the comparison of partical velocity spectrum between 
the theoretically computed results and the experimental results with a 
water depth of 0.7m, wave steepness of 0.0478 and measurement elevation 

of 0.1m under water surface, where "I" denotes the measured spectrum in- 
cluding 95% confidence limits.  From the comparison, we can find that the 

measured data are better consistent with the nonlinear theory than the 
linear theory.  But in this case, the nonlinear phenomenum is not obvious 

because of the experimental wave conditions.  In future, we will try to 
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make the comparison with more suitable data. 

4.  DISCUSSION 

After normalizing the formula (11) with total energy and the peak 
frequency of power spectrum, we use some standard form of power spectrum 
in place of linear spectrum <j)j_(k) in equation (11) to investigate  some 
nonlinear characteristics of water particle velocity and wave pressure. 

First, based on Pierson-Moskowitz spectrum, the influence of wave 
steepness on the nonlinear effect is investigated.  The computational 
results with relative water depth (h/Lm) of 0.15, and relative measured 
elevation (Z/Lm) of -0.08 (measured from water surface) are shown in 
Figure 2.  In the figures, the significant wave steepness 5 is defined 
by significant wave height (H, .) and wave length (Lm), while the latter 
is correoponding to the peak frequency fm.  The results calculated by 
linear theory are also shown in these figures.  From the fact that the 
nonlinear component appear in higher and lower frequency ranges, we  can 
learn from figure 2 that the nonlinear effect increases as the wave 
steepness increases. 

Figure 3 shows the influence of surface displacement spectral form 
on the nonlinear effect for horizontal water particle velocity.  Figure 
3(a) and 3(b) show the results computed by using Pierson-Moskowitz spect- 
rum and JONSWAP spectrum respectively.  From the comparison between these 
two figures, it is found that the sharp form like JONSWAP spectrum 
produces clearer nonlinear effect than the milder form like Pierson- 
Moskowitz spectrum. 

Figure 4 shows the influence of water depth on the nonlinear effect. 
In the figures, AJSJ/AL denotes the relative magnitude of nonlinear total 
energy to linear total energy.  The results are computed by using Pierson- 
Moskowitz spectrum.  The breaking limit drawing with dash line in these 
figures is calculated from Hamada's wave breaking formula (Hamada 1951). 
It is shown that the horizontal velocity, vertical velocity and wave 
pressure all exhibite the same properties.  From the figures, it is found 
that the nonlinear effect increases as relative water depth h/Lm decre- 
ases when the h/Lm in the range between 0.1 and 0.3.  However when h/Lm 
is larger than 0.3, the nonlinear quantity is independent of the relative 
water depth.  On the other hand, when relative water depth approaches 
0.1, the nonlinear components approach to infinitive.  In fact, in this 
water depth or shallower area, this formula can no longer be used because 
the formula is derived based on the weakly nonlinearity assumption. 

Figure 5 shows the influence of measured elevation on the nonlinear 
effect.  Z denotes the measured elevation from mean water surface.  The 
results are computed by using Pierson-Moskowitz spectrum and with rel- 
ative water depth of 0.15.  For particle velocities, horizontal component 
and vertical component exhibite the same properties.  From the figure (a), 
it is found that the measured elevation tends not to bear influence on 
the nonlinear effect.  But as to the wave pressure (Figure(b)), it is 
found that the nonlinear effect increase as the elevation decreases. 

In the above description, all simulate computational results only 
concern one-dimensional spectrum.  In figure 6, the influence of direction- 
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al dispersion on the nonlinear effect is investigated with relative depth 
of 0.15, relative measured elevation of -0.04 and wave steepness of 0.06. 
The nonlinear spectral components calculated by the directional wave 
spectrum is compared with that of calculated by uni-directional wave 
spectrum.  For convenience, the form of cos^6 was used as the wave dire- 
ctional distribution to calculate the nonlinear spectral components.  In 
the computations, we found that it has to take a long computing time  to 
integrate the directional distribution to obtain the ordinary power 
spectra of particle velocity or wave pressure.  In Figure 6, from the 
comparison, it is found that the wave directional dispersion diminishes 
the nonlinear effect. 

5.  CONCLUSION 

This paper is composed of two parts.  First,  a weakly nonlinear 
random wave theory in finite water depth was developed.  The nonlinear 
spectral components for water particle velocity and wave pressure can be 
calculated directly from the directional spectrum of water surface dis- 
placement.  The theoretical computed results were verified by experiment. 
Next, a simulate computation was performed.  In accordance with the dif- 
ferent characteristics of wave properties, such as wave steepness, water 
depth and so on, the nonlinear effects on wave kinematic and pressure 
properties were extensively investigated by using some standard power 
spectrum.  From the investigation, we found some important conclusions 
as follows.  First, the important characteristics of nonlinear effect for 
water particle velocity and wave pressure are similar to that for water 
surface displacement spectrum.  Second, it takes much more computing time 
for directional spectrum than that for one-dimensional spectrum.  Third, 
this theory can not be used in shallow water area when relative water 
depth is below 0.1. 
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