
CHAPTER 31 

DECOMPOSITION OF NONLINEARLY REFLECTED IRREGULAR WAVES 
BY THE WAVE BREAKING AND DEFORMATION 

by A. KIMURA* 

ABSTRACT 

This paper deals with a new method to decompose incident and reflected 
waves from the measured data of irregular standing waves. The theory by 
Goda et al. is extended to cope with the reflection from such a coastal 
structure that has a sloping surface and brings about different 
reflection coefficient for each incident waves. Irregular standing waves 
are decomposed into incident and reflected irregular waves by the short- 
term wave spectrum analysis method. And the reflection coefficient of 
the approximated zero-up-cross waves are defined as the ratio between 
envelopes of these irregular wave profiles. The calculated reflection 
coefficients can be discussed in terms of the incident zero-up-cross 
wave parameters such as a wave steepness, Ursell parameter, etc. An 
effective wave gauge system to measure irregular standing waves which 
have a wide band spectrum is also discussed and a method to compose the 
system is proposed. 

1. INTRODUCTION 

1) 2) 3") The theories by Kajima_', Thornton et al. ' and Goda et al. ' have been 
commonly used to decompose incident and reflected waves from irregular 
standing waves formed in the vicinity of a model of off-shore structure. 
With these theories, irregular wave data measured at two or more 
different points ' in a wave tank are firstly analyzed by the Fourier 
transform method and then decomposed into incident and reflected waves. 
The reflection coefficient is calculated for every frequency component 
of a spectrum. By these methods reliable reflection coefficients are 
calculated from an experiment of irregular waves when incident and 

reflected waves nT and nR can be written in the form 
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Vt)=    2    aincos(2lrfnt"*In> (D 
n=l 

and 
CO 

Vt)=     I     VCos(27rfnt-*Rn) (2) n=l 

in which f is the frequency of the n-th component. ajn, agn are the 

amplitudes, 4>T , <t>j> are the phases of incident and reflected waves, 
respectively. 

In case of a breakwater made of stones or blocks, which has a sloped 

surface, however, the reflection characteristics of the irregular waves 

change almost wave by wave which are defined by the zero-up-cross 

method. A wave with a large steepness, for example, tends to break on a 

slope and loses significant part of its energy. Therefore, the resultant 
reflection coefficient is presumably very small for this wave. On the 
contrary, a wave with a small steepness is reflected with a large 

reflection coefficient, since it may not break on the slope. 

Since reflection coefficients differ wave by wave for this type of 
breakwater, amplitudes and phases in eq.(2) may change occasionally. 

There has been no established method to calculate the amplitude and 

phase of each wave from those reflected irregular waves. The amplitudes 
and phases of component waves decomposed by the ordinary Fourier 

transform method are, therefore, apparent ones in the analysis of 
reflection for this type of breakwaters. A large portion of existing 

offshore structures, however, somehow exhibit this type of reflection. 
This study aims to develop a method which facilitates the calculation of 
the reflection coefficient of irregular waves reflected from this type 
of   breakwater. 

2. DECOMPOSITION OF IRREGULAR STANDING WAVES INTO INCIDENT AND REFLECTED 

COMPONENT WAVES 

For simplicity, the reflection of uni-directional irregular waves from a 

breakwater is treated in this study (see Fig.l). The coordinate system 
is shown in the same figure. Wave gauges with the intervalAi are 

installed at a distance D from the breakwater. This breakwater is 

assumed to be of such a type that changes reflection characteristics 

according to the individual incident wave properties (e.g. steepness). 

Amplitudes and phases of reflected component waves in eq.(2), therefore, 

may be assumed constant only within a zero-up-cross interval of the wave 

profile.   The   Fourier   transform   method   requires   the   constant   amplitudes 
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and   phases   of   component   waves.   However,    since  they   are   disturbed 

locally,  data are analyzed with a data window in this study. 

Y(u) = (/27T')exp[-TT(t-u)2/T'2] (3) 

This window is the so called Gaussian window and has finite values only 
around t=u and has negligibly small values outside t=u±T'/2. Executing 

the convolution with wave profiles rijCt) and n2(t) measured at x=x1 

and x=x? in the wave tank respectively and the data window, amplitude of 

composed (i.e.,   incident and reflected) component  wave  is given as 

l-T/2 
A    (u)+iB     (u) = — n.(t)Y(u)exp(-±2irf t)dt 

Jn Jn 1   J_T/?      1 n ;-T/2 (A) 

in   which  i= /^T,   T»T',    fn=n/T  (n=l,2,...)  and  Ajn(u)  and  BJn(u)   are 

wave gauge 

\ structure 

Fig.l  Illustration of wave gauges and a structure and the coordinate 

system. 

real and imaginary parts of the n-th Fourier component of a spectrum. 
Subscript j  indicates that  those  are  the  calculated  values  from  the  wave 

profiles      1^ 
following equat 
component waves are obtained 

1 

1-(u)   (j=l,2).    Substituting   these   components   into  the 

uations, amplitudes and phases of incident and reflected 
3) 

aIn(u)    ~2|sin(k ^y|-{[A2n(u)-Aln(u)cos(knA£)-B:Ln(u)sin(knA£)]' 

+ [B„ (u)+A, (u)sin(k A£)-B. (u)cos(k A£)]2}1/2 
zn    In       n    In       n 

aRn(u)  2|sin(k hi)I 
{[A. (u)-A, (u)cos(k A£)+B, (u)sin(k hi)]' 

Zn in       n    in       n 

+ [B. (u)-A., (u)sin(k A£)-B, (u)cos(k A£)]2}1/2 
zn    in       n    in       n 



WAVE BREAKING AND DEFORMATION 399 

,     -A„   (u)+A.   (u)cos(k A£)+B.    (u)sin(k M) 
flnK   '     tan      l    B,   (u)+A1    (u)sin(k A£)-B,   (u)cos(kA£)J 

2nv lnv lnx 
k x, 

n 1 

,     -A.   (u)+A,    (u)cos(k M)-B,   (u)sin(k hi) 
.      /•>_,.     -1 r       2n In n In n 
pRn(,u;     tan     L _B     (u)+.     (u)sin(k A£)+B     (u)Cos(k A£) 

2nx lnx In 
k X, 

n 1 

(6) 

in which ay (u) and a^ (u) are amplitudes and <t>j_n(u) and <t>Rn(u) are 
phases of incident and reflected component waves. Wave number kn has the 

following relation with f  : 

(2iTf  )  = gk tanh(knh) (7) 

in which h is a water depth and g is the acceleration of gravity. Figure 

2 shows an example of decomposed incident and reflected irregular wave 

components aj (u) (above) and a^n(u) (below). Analyzed irregular waves 

are numerically simulated for the spectrum given by eq.8. 

S(f)=21/4exp[-TT(f-f )V] (8) 

In which the peak frequency f and the width parameter T are 1.0Hz and 

5s respectively. One hundred component waves from f=0.84Hz to 1.16Hz are 

composed in the simulation. The reflection coefficient of the breakwater 
is set to be 0.5 and no phase shift is assumed at the breakwater for all 

the component waves. Other parameters such as h=10cm, M. =23cm (1/4 wave 
length of the dominant component, f =1.0Hz), D=(2+0.23)m and T"=5s 
(eq.3) are used in the calculation. Plotted are the amplitudes of 

dominant frequency (f =1.0Hz). 

Gradual   changes   of  the   incident  and   reflected   wave  amplitudes  are 

t(sec) 

Fig.2 Gradual change in decomposed amplitudes of incident and reflected 

waves (f = 1.0Hz). 
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observed in Fig.2. Only a time-independent single couple of incident and 

reflected amplitudes for individual component waves are obtained from 

the ordinary theories. The gradual changes in the present method are due 

to the leakage of a data window. The data window works not only for the 

emphasis of local property of data but also for the reduction of a 

resolution power by the Fourier transform method. If cos(2w fgt), for 

example, is analyzed instead of 1.(t) in eq.(4), the calculated 

Fourier spectrum is not a single spike spectrum but has a spreading of 

spectrum values around f=fg as shown in Fig.3. This broad nature of the 

calculated spectrum is so called the leakage of a spectrum. The 

neighboring frequency components bring about this gradual change in the 

amplitudes (Fig.2). These changes in aTn and agn are not the independent 

and random ones but seem to be coherent with each other since the 

prominent peaks in ajn reappear in a^n with some time interval. Although 

amplitude of reflected peaks reduce somehow. The averaged interval 

between these corresponding peaks is about 5.5s and this is the time 

required to go back and forth over the distance D (see Fig.l), with a 

group velocity of the dominant component wave (f =1.0Hz). The ratios 

between the time shifted amplitude a^ (u-5.5) and the incident amplitude 

a-r (u) are approximately 0.5 at any time irrespective of u. The gradual 

changes in the calculated wave amplitudes due to leakage, therefore, may 

be considered as an advantage of this method for the study of local 

correspondences of incident and reflected waves inspection. 

0.20 

0.15 - 

0.10 

0.05- 

Fig.3 Leakage of a calculated spectrum. 
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3. THE METHOD OF EVALUATING THE LOCAL REFLECTION COEFFICIENT FROM THE 

ENVELOPES 

Incident   wave   profile    r| j(u)  and  its  envelope  E-r(u)   are  given  in  terms 

of ajn(u)  and    <t>-j-n(u)  as 

rijOi)"    I    aIn(u)cos[-2Trfnu+<(>in(u)] (9) 

and 

where 
vu)=[nL(u)+TiL(u)]1/2 do) 

nlc(u)=    I    aIn(u)cos[-2Tr(fn-fp)u+<)>In(u)] 

oo 

nis(u)=     I     aIn(u)8in[-2lr(f  -f   )u+<f,     (u)] } 
n=l r v     y 

Reflected wave profile T) ^(u) and its envelope Ejj are also expressed in 

terms of a^ (u) and <t>j{n(u) in the same way as 

ri (u)= I    a  (u)cos[-2iTf u+<j)  (u) ] 
n=l 

(12) 

and 

where 

ER(u)=[nJc(u)+n^(u)]
1/2 (13) 

\c(u)= I     aRn(u)C°S[-2W(£n-fp)U+*Rn(u)] 
n=l 

»- l     a  (u)sin[-2W(fn-f )u+<t)Rn(u)] nRsw i   aRn^"
1L ^ n V 

n=l (14) 

Solid lines in Fig.4 show I1T(U) (above) and n g(u) (below). Dotted 

lines are envelopes E-j-(u) and E^(u). Analyzed irregular waves are the 

same as those used in the calculation of Fig.2. 

Numerically simulated incident waves and their calculated reflection 

waves are composed first and then decomposed into incident and reflected 

wave profiles again by use of equations from eqs.(4) to (6) and eqs.(9) 

to (14). Calculated decomposed wave profiles of incident and reflected 

waves show good agreements with those originally simulated ones. 
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Figure 5 shows the Lissajous' figure of Ej and ER although ER is shifted 
by 5.5s to adjust a time correspondence with Ep The solid line shows 
the relation of ER=0.5Ep Since the reflection coefficient is set to be 
0.5, this is approximately the theoretical relation in this case. Except 
small deviations in the small part, the agreement is found fairy good. 
The present method is extended to evaluate the reflection coefficient of 
individual waves defined by the zero-up-cross method in terms of their 
properties (e.g. steepness) as follows. Since Ej and ER approximately 
pass   the  crests  and  troughs   of   waves  as   seen  in Fig.4  and  from  the 

0T(U) 

5   sec 

Fig.4 Decomposed wave profiles (solid lines) and their envelopes (dotted 

lines) for narrow-band spectrum case. 
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Fig.5 Lissajous' figure of Ej and ER. 
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definition that an envelope is symmetrical about the u-axis, wave 
envelope may presumably have an instance u-, within a zero-up-cross 
interval, when the twice of the envelope is equal to the zero-up-cross 
wave height determined in the same interval. Incident and reflected wave 
heights  HjCu^)  and  HJJ(U-)  are,   therefore,   approximated  by  equations 

HT(u.)«2ET(u.), H_(u.)=2E_(u.) (15) 
11 11 Kl K      1 

The wave period of individual waves are approximated as follows. 
Equation 4 gives the short-term wave spectrum ' in terms of u. The 
squared sum of amplitudes I A • +B • | then changes from time to time 
according to the local properties of waves. The occasional zero-up-cross 
wave period can be approximated with 1/f (u.) in which f (u:) is the 
peak frequency of the above squared spectrum at the instance u- when the 
wave height is determined by eq.(15). The wave length is approximated by 
the small amplitude wave theory with this 1/f (uj '. The wave 
steepness,  for example,  is determined as 

VLllt=uJ2EI(ui)/LI[fp(Ui)] (16) 

where Lj-   [  f  (u^)   ]     is the wave length given by 

VV"!'1^'3^ (17) 
P     i 

The reflection coefficient at the instance is therefore given as 

r(u.)=2ER{u.-2D/Cg[fp(u.)]}/2EI(u1) (18) 

in which C [ f (u^)] is the group velocity of a frequency f (u-). As 

explained so far, the present theory uses wave envelopes instead of wave 

heights to calculate the reflection coefficients. Because the reflection 

coefficients calculated from the corresponding wave profiles may. 

inevitably include errors to a certain degree due to a dispersive nature 

of irregular wave profiles. The change in the envelope, on the other 

hand, is rather gradual and small in comparison with the irregular wave 

profile itself unless the distance is large. ' So the present method may 

have an advantage in the calculation of reflection coefficients. However 

a clear definition of the instance u- to determine wave height and 

frequency (period) in eqs.(15) - (18) still has not been developed. 
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4.   ARRANGEMENT OF WAVE GAUGES FOR THE MEASUREMENT OF IRREGULAR WAVES OF 

A WIDE BAND SPECTRUM 

The fundamental concept of the present theory is exemplified for a 
irregular waves of narrow band spectrum in the former chapter. The 

theory is verified for irregular waves of a wide band spectrum in this 
chapter. In case of a wide band spectrum, there are component waves 

which make sin(knAi) equal or nearly equal to 0 in the denominator of 

eqs.(5) and (6). Calculated reflection coefficients for these component 
waves are extremely inaccurate. The theory by Goda et al. ' recommended 

an interval from 0.1 TT /k to 0.9 IT /k as an effective frequency or 

wave number range where reliable reflection coefficients can be 
calculated with eqs.(5) and (6). In this connection, a little narrower 

range from 0.3 IT /k to 0.7 n /k , for example, should be employed to 
improve the resolution. The narrower the effective frequency range 

becomes, however, the wider the incalculable frequency range becomes in 
the spectrum. To avoid this situation, the multi-wave gauge system is 
adopted in this study. Wave gauges are arrayed irregularly so that there 
is at least one suitable wave gauge pair that guarantees an effective 

frequency range for all the component waves in the spectrum. Intervals 
of wave gauges are determined as follows, if the same effective 

frequency range as above mentioned is adopted. The largest wave gauge 
interval Ai-^ is calculated in terms of the given low frequency bound f^ 

to be analyzed in the spectrum as 

AV^lL(fd) (ig) 

in which L(f(j) is the corresponding wave length of fj. An upper bound of 

the effective frequency range f-^ for this pair of wave gauges is 

determined implicitly by 

(20) 

The second largest wave gauge interval A £ j  is given as 

AV-¥L<V (2D 

since fl should be the lower bound of the effective frequency range for 

the second interval, if no overlapping of effective frequency ranges is 

permitted. Repeating the same procedures from eq.(19) to eq.(21) until 

the upper frequency bound for the i-th wave gauge interval f. 

(i=l,2,„.) exceeds the high frequency bound f to be analyzed in the 
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spectrum, whole intervals of the system (t\l^) (i=l,2,...) can be 

determined. Intervals of a sample wave gauge system is listed in Table- 

1. Pierson-Moskowitz spectrum whose peak frequency f equals to 1.0Hz is 

used in a calculation of these intervals. High and low frequency bounds 

of the spectrum are set to be 0.5Hz and 3.5Hz, respectively, effective 

frequency interval is set to be 0.3 wS kR < 0.7 TT and water depth h is 

set to be 10cm. 

Four pairs of wave gauges are necessary to cover the entire frequency 

range in this case. Example arrangements of wave gauges in this case are 

schematically shown in Fig.6 (a), (b) and (c). The direction of incident 

wave is from left to right. Centers of all pairs of wave gauges coincide 

with each other in the system (a), one wave gauge is commonly used as a 

partner of the individual pairs in the system (b) and some wave gauges 

are commonly used twice as a partner in two wave gauge pairs in the 

system (c). A total number of wave gauges can be reduced in the system 

Table-1 Sample of the wave gauge intervals and their effective frequency 

range. 

f(Hz) 0.50-1.09 1.09-2.02 2.02-3.18 3.18-3.50 

Ai(cm) 29.2 12.5 5.4 2.3 

W,  W, w, w,   wc w, w7  w 

I Iff..   r f 
(a) &l2 

M-> 
A£4 

(b) 

V I1 I2 W
|3 I4 

W
5 

1 1 
All 

1 ' 1 
", 

. Al3 

(c) 

•v I1 I2 1 I4 1 
•r 1 

•«3  
Llx 

1 1 1 
 =»• 

A£2 
.Al3 

Fig.6 Samples of the wave gauge system. 
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(b) and (c). Judging from the numerical simulation, the resolution by 
the system (c) is preferable to (b). The origin of x-axis in the system 
(c) is preferable to set on the offshore-side a wave gauge pair which is 
used to analyze the dominant component. And the system is preferable to 
apply  as  close as  possible to the structure. 

Fig.7 Decomposed wave profiles  (solid  lines)  and  their  envelopes  (dotted 
lines)  for  wide-band spectrum case. 

(cm) 

1.0 

ER 

0.5 

0 

.&" 

^° JV 

ER=0.5EI 

0.5 2.0 

Fig.8 

1.0 1.5 
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Relation  of  the   values  at  the   prominent  summits  in   the   wave 
envelopes   for   incident  and  reflected  wave  profiles. 
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Figure 7 shows the calculated result of incident and reflected wave 

profiles and their envelopes by the system (c). The distance from W-l to 

the breakwater is set to be 0.3m. The reflection coefficient is set to 

be 0.5 and no phase is shifted for all the component waves. Notations 

and lines are the same as those used in Fig.4. Local disagreements 

between wave profiles and envelopes are a little prominent in comparison 

with the narrow band spectrum case. This comes from the asymmetric 

nature of the wave profile with the zero-level line, which irregular 

waves with a wide band spectrum usually have. With the ordinary method 

which dispenses with a data window7-*, however, calculated results are 

almost the same as those by the present method. It can be distinguished 

from this figure and has been sometimes reported in the field 

measurements that irregular waves tend to form groups in a few waves 

which are enveloped by a single prominence of an envelope. Despite of 

the remarkable changes between incident and reflected wave profiles, the 

wave envelope maintains its form even after the reflection and 

transition. And every calculated time interval between the corresponding 

summits in the envelopes is almost equal to that required to go back and 

forth over the distance D with the group velocity of the wave around the 

summit. Every wave group presumably behaves as a single wave "packet 

in the process of reflection and transition. At the trough of an 

envelope, the side foot of the neighboring packets cross each other. 

Then the Lissajous' figure of ER and Ej shows inevitably fluctuations 

around their troughs. To minimize this error, reflection coefficients 

are calculated only at the summit of individual prominences in ER and E-j- 

in 
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0.2     0.4      0.6      0.8     1.0      1.2 
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Fig.9 Comparison of (a) wave height,  (b) wave period between those by 
the zero-up-cross method and the present  definition. 
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this study. The relations of corresponding summits in E-r and En in Fig.7 

are plotted in Fig.8. The solid line shows the relation of E^=0.5E-r. The 

reliable reflection coefficient can be evaluated for those values. Wave 

height and period (frequency) in eqs.(15) - (17) are, then, determined 

at the prominent summit of the envelope. The calculated wave heights and 

periods, however, tend to be a little larger in this theory than those 

determined by the zero-up-cross method. 

Figure 9 (a) shows the relation between the wave height determined by 

eq.(15) at the prominent summit of the envelopes and that by the zero- 

up-cross method just around the same instance. The solid line shows the 

relation 1.1HJ=2EJ or 1.1HR=2E-R. Figure (b) shows a relation of the 

zero-up-cross wave period to 1/f (u^) at the prominent summit of an 

envelope. The solid line shows the relation of T=0.9/f (u-). Although 

the data show a little scattering, the zero-up-cross wave height and 

period can be approximated with the small modifications for calculated 

wave height and period. The calculated reflection coefficient from the 

present theory, therefore, can be discussed in terms of local properties 

of incident waves such as the steepness, Ursell number, etc. The 

numerically calculated constants for modifications, i.e., 1.1 and 0.9 in 

Fig.9 (a) and (b) respectively, are almost the same as those for wide 

band spectra such as Pierson-Moskowitz, Neumann and JONSWAP spectrum. 

5. DISCUSSION 

Since we assumed that an amplitude and a phase of a reflected wave may 

be constant only within a zero-up-cross interval, the width parameter of 

the data window in eq.(3) is desirable to be of the same order as that 

for a period of the dominant wave. The smaller this value becomes, 

however, the more uneven characteristics of the wave envelope prevail 

and the wider the calculated reflection coefficients fluctuate on the 

average. On the contrary, the larger this value becomes, the more 

locally the occasional nature of wave properties are averaged. Since the 

single wave group consists of 2-5 waves with similar properties (i.e., 

wave height, wave period) on the average, reflection characteristics of 

waves around the summit of an envelope may be assumed mutually equal. 

Two to five times of the dominant wave period is recommended for this 

value. 
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