
CHAPTER 21 

ROUGH TURBULENT BOUNDARY  LAYER 
IN SHORT-CRESTED WAVES 

John R C Hsu * 

Abstract 

Prior to the investigation of rough turbulent boundary layer in a short-crested wave, the 
oscillatory laminar boundary layer at the bed is considered. Supported by numerical 
results of water-particle motions close to the bottom, the general patterns of kinematics in 
the laminar boundary layer within this wave system are reported in order to promote the 
understanding of the complex phenomenon. To propose a suitable method for turbulent 
boundary layer within such a wave system, a two-layer model using time-independent 
viscosity coefficient is first studied. Potential application of this model to short-crested 
waves is considered. From numerical results it is found that the time-invariant viscosity 
model is useful but can not produce velocity profile with flow reversal. It is suggested 
that a time-varying viscosity model may be more appropriate. 

1.   Introduction 

Unlike progressive waves which propagate in a single direction, and standing waves 
that fluctuate vertically, the short-crested wave is defined as having a surface elevation 
which is doubly periodic in two perpendicular directions. Among many other 
occurrences in nature, oblique wave reflection often results in such a short-crested wave 
system in front of a long maritime structure. A simple reflection produces a combined 
progressive wave propagating along the reflecting wall (the x-direction), with a 
combined celerity Cs, and a standing wave component normal to it, in the y-direction (see 
figure 1). 

Oblique approach of waves to a long rubble-mound breakwater, comprising either large 
precast concrete armour units or caisson superstructure, can have reflection coefficient as 
high as 0.8, so forming short-crested systems (Silvester 1986). The wave height of the 
combined wave system could be double that of the incident wave component, if a near 
full reflection exists. This doubled wave energy is applied to the bed, and hence can 
expedite the transmission of sediment along the wall. The occurrence of scour in front of 
seawalls is well known, and has become a common concern since it could have led to 
the failure of some maritime structures (Irie & Nadaoka 1984).To estimate the scour and 
bottom changes in front of a long breakwater, it requires the understanding of the basic 
mechanisms of waves and currents, particularly that within the bottom boundary 
layer,within which most of the sediment transport takes place (Hedegaard 1985). 

The existence of a thin viscous boundary layer at the bottom in an oscillatory fluid has 
been extensively studied since Longuet-Higgins (1953), for both laminar and turbulent 
layers, particularly for two-dimensional progressive and standing waves. The term 
oscillatory implies that fluid velocities vary over time, so does the thickness of boundary 
layer. Traditionally, the description of these kinds of boundary layer in waves has been 
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based upon a direct solution to momentum equations subjected to boundary conditions. 
This process is often laborious. Similar to the time-invariant viscosity proposed for 
steady turbulent flow, earlier studies of wave-induced oscillatory turbulent layer have 
been primarily aimed at determining the bottom shear stress and energy dissipation. 

Amongst many laboratory data available for wave boundary layer, Jonsson (1963, 
1966) and Jonsson & Carlsen (1976) have published experimental work which has 
played a significant role in the study of turbulent boundary-layer theory. Their 
experimental data have since been used by all workers in this area. 

Kajiura (1968) developed a three-layer analytical model using the concept of 
time-invariant effective viscosity. This approach was followed by Noda (1971) and 
others to examine the turbulent boundary layer in progressive and standing waves. 
Employing Jonsson's (1980) new approach of velocity defect law, Brevik (1981) 
presented a two-layer model, which proved to be mathematically simple and yet fairly 
accurate compared to the three-layer model (Kajiura 1968). More recently, a time-variant 
effective viscosity model was suggested by Trowbridge & Madsen (1984), for fluid 
velocity up to second-order. 

Although the turbulent boundary layer in two-dimensional waves have been studied 
extensively, the case for three-dimensional waves has received very little attention. For 
such short-crested waves, produced by full oblique reflection, the first-order Eulerian 
water-particle velocities and mass transport have been reported by Mei et al (1972) and 
Tanaka et al (1972), for a laminar boundary layer on a smooth bed. Hsu et al (1980) 
have derived the Eulerian water-particle velocities to second-order also for a laminar 
layer, and have reported experimental data available. However, the investigation of a 
turbulent layer has not been made previously for this wave system. 

Because the wave-induced bottom layer is generally turbulent in relatively shallow 
water where the ocean bed is rippled and hydrodynamically rough, it is necessary to 
examine the rough turbulent layer in short-crested wave system, since it differs 
substantially from the laminar case. 

Vertical wall Bed 
Tfi.VWirVAWA-1'A.vwAtfr 

Plan Elevation 

Figure 1. Definition sketch of short-crested wave system, showing co-ordinates, 
incident and reflected orthogonals, approaching angle 8, wavelengths L 
and Lx, crest length L , and combined wave celerity Cs. 
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In the present paper, Brevik's (1981) two-layer model is thoroughly studied 
numerically, especially the effect of varying the thickness of the lower layer (i.e. the 
overlapping layer of Brevik). From the results of numerical calculations, it was found 
that the relative velocity curves UJ/UJ and u/uf may become discontinous upon using 
some improper values of the thickness of the lower layer. Minor drawback of this model 
is discussed. To apply the two-layer model to the short-crested waves, necessary 
adjustment in formulations and procedures are then proposed. 

2.    Laminar boundary layer at the bottom 

Short-crested waves produced from 100% reflection of oblique waves can be equated 
to two progressive waves of the same amplitude propagating at an angle to each other. 
The resultant water-particle motions are very complex, varying spatially both in the 
vertical and horizontal directions (in the x-y plane). Water-particle motions for this 
simple case of two wave trains of equal height and period is shown schematically in 
figure 2, where it is seen that rectilinear and elliptical orbits exist along certain 
alignments. Along that of the combined-crest propagations (i.e. at y/L = 0,1/2,1,...) 
water-particle orbits are in a vertical plane. Half-way between, rectilinear horizontal 
oscillations occur (i.e. at y/L = 1/4,3/4,...); again half-way between (i.e. at y/L = 
1/8,3/8,5/8,...), the orbits are ellipses at an angle to the vertical which depend upon tneir 
depth, being in a horizontal plane at the bed. 

Figure 2. Patterns of 
water-particle 
motions along 
various y/L 
alignments in 
a short-crested 
wave system, 
relative to the 
reflecting wall. 

6=45° 

PLAN 

section on X/U » 0 

Hsu et al (1979) have derived a third-order approximatioin of wave theory to 
short-crested waves by a perturbation method, for the case of full oblique reflection 
from a vertical wall. Irrotational motion was assumed, the fluid inviscid, incompressible 
and uniform depth of water. Working with non-dimensional quantities, final expressions 
for velocity potentials (())), surface elevations (T|), angular frequency (co), and Eulerian 
water-particle velocities (u,v,w) in each order of approximation were derived in 
dimensionless form. 
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In studying the viscous boundary layer at the bed, Eulerian water-particle velocities at 
the outer edge of the bottom layer (U,V,W) are required, for both laminar and turbulent 
cases. These velocities are represented by the velocities on the bed from the inviscid 
wave theory for z = -d. The expressions of free-stream velocity (U,V,W) in the x,y and 
z-directions respectively are given in dimensional form as follows: 

U = e<)>x | z_.d =   e V(k/g) (mco0 /sinhkd) cos(nky) cos(mkx-ot) 

+ e2 V(k/g) [2mp2 cos2(nky) + 2mp3 ] cos2(mkx-ot) 

= U1 + U2 + 0(e3) (1) 

V = £<|>y | z=.d =  - e V(k/g) (ncoo /sinhkd) sin(nky) sin(mkx-ot) 

-e2V(k/g)[2np2 sin2(nky)] sin2(mkx-ot) 

= V1 + V2 + 0(e3) (2) 

W = e<|>z I ^^ = 0, more practically at the real bed. (3) 

in which e is the small perturbation parameter "ka", where "a" is the amplitude of the 
short-crested wave to the first-order, and "k" is the wave number 2TI/L, L being the 
wavelength of the incident or reflected wave component, a is the angular frequency of 
the incident and reflected waves (i.e. 2rc/T, where T is the wave period in seconds), "g" 
is the acceleration of the gravity, "d" is the water depth in meters, "m" and "n" are the 
components of wave number "k" in the x and y-directions respectively as shown in 
figure 1, "coo" is the leading term of dimensionless angular frequency (i.e. o/V(gk)). 
The full expressions to p2 and p3 have been presented by Hsu et al (1980). Ux and Vt are 
free-stream velocity components to the first-order, and IL, and V2 to the second-order. 

Based upon the third-order approximation to short-crested waves, the Eulerian 
water-particle velocities within the laminar bottom boundary layer for a smooth and 
horizontal bed have been derived (Hsu et al 1980), also by a perturbation method. The 
procedure used was to solve the governing Navier-Stokes equations in dimensionless 
form subjected to various boundary conditions at the bed and at the outer edge of the 
boundary layer. An additional change of non-dimensional variable of kz within the 
bottom layer was introduced, C = (co^^kz. Inserting the perturbed series of fluid 
velocities within the boundary layer (u,v,w) and free-stream velocities (U,V,W) into the 
governing equations, and collecting terms of each order in e yielded the necessary 
equations to each order of approximation. The solutions to Eulerian water-particle 
velocities to the first-order (UpVpWj) and to the second-order (u2,v2,w2) have been 
derived. The algebraic procedures of solving these equations were complex. 

The resultant Eulerian water-particle velocities (upVj.Wj) to the first-order are given in 
dimensional form as 

u1= e V(g/k) (m 0,/sinhkd) cos(nky) [cos(mkx-ot) - e"^cos(mkx-cn+ 0], (4) 

Vj = - e V(g/k) (n co^sinhkd) sin(nky)   [sin(mkx-at) - e"^sin(mkx-ot+0], (5) 

wx= e[(Vcoo)
1/2(gk)1/4/sinhkd] cos(nky) [V2 £ sin(mkx-ct) - sin(mkx-ct+Jt/4) 

+ e"S sin(mkx-ot+ C+ it/4)]. (6) 
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The non-dimensional variable C, in equations (4)-(6) regulates the dimensionless 
distance kz within the bottom laminar layer. In dimensional form, C = z/V(VT/7t), as a 
relative measure of vertical distance from the bed, where ^(VT/rc) = V(2\)/o) is the usual 
boundary parameter. It is worth noting that the value of t, = 2% corresponds to the 
distance at the outer edge of the laminar boundary layer, because its thickness is usually 
calculated by 8 = 2% V(2V/a) = 2(7tVT)1/2. 

The working procedures leading to the final expressions of the second-order Eulerian 
velocities (u2,v2,w2) are rather lengthy and complicated. In general, they consisted of 
time-dependent (periodic) and time-independent (steady) terms. These were reported by 
Hsu et al (1980). The vertical distributions of velocity profiles vary as functions of 
position y/Ly (i.e. in the direction normal to the reflecting wall) and the relative time step 
t/T. It is useful to compare the 
relative magnitudes of velocity 
components to the first and 
second-order, for various y/L 
and l/T in the laminar layer 
within a short-crested wave. 
From these comparisons, it 
will help in obtaining an 
overall picture of water- 
particle motions within the 
turbulent   boundary    layer. 

1/8- 

1/4- 

It   is   now   desirable    to 
show a  test  case  of short- 
crested wave system produced 
by incident wave of period T=l 
sec and 76 mm in height, with 
approaching angle at 8 = 45° to 
a reflecting wall in 300 mm of 
water. A maximum u=190mm/s 
occurs at  the combined-crest 
alignments.  Figure 3  depicts 
the vectorial sums of Eulerian 
fluid velocities (u1,v1,u2,v2),up   t^ 
to second-order, for specific y/L - 
at various t/T. The maximum 
values  of u  and v occur  at 
different  y/L    and t/T,    for 
example, maximum u appears at 
y/L =0,1/2,1 at t/T= 0,1/2,1; 
while v becomes maximum along 
alignments y/L = 1/4 and 3/4 at 
t/T=l/4 and 3/4. From figure 3, 
it   can  be  observed,  among 
various t/T, that  along the 
alignments of combined-crest (i. 
e. y/Ly = 0, 1/2,1) water-particle 
motions  are predominantly  in 
the   x-direction, and that along 
y/Ly = 1/4    they   are   mainly 
transverse. In the vicinity of y/L 
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Variations of vectorial sums of Eulerian 
fluid velocities to second-order, in 
magnitude and direction, as functions 
of y/L   andt/T, in a laminar layer. 
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= l/8ths water-particle orbits rotate in ellipses. It can be observed that the orbit rotates 
anti-clockwise at y/L = 1/8 while it becomes clockwise at y/L = 3/8, thus reaffirming 
the water-particle motions sketched in figure 2. 

Knowing that u and v reach their maxima at different y/L and t/T as noted, it is 
beneficial to display the vertical distribution of velocity profiles within the laminar layer 
as a function of time t/T for the alignments where the velocity is at its maximum as 
illustrated in figure 3. From figure 4, it can be seen that flow reversal exists in the lower 
portion of the bottom layer at certain combinations of y /L and t/T, even when fluid 
velocities to the first-order are considered. The relative ordering can be realised from the 
following example. The maximum ratio of Uj and u2 (first-order to second-order 
velocity) can be obtained from figures 4 and 5, where ut = 10u2. Figure 5 shows the 
maximum magnitudes of the second-order velocities, u2~ 4v2, and u2 = 4wp for the 
same wave conditions (T=1.0 sec, H=76 mm, d=300mm); in other words, Uj « 40v2 
and Uj «> 40wr Further calculation shows that the maximum ratio of Wj/w^ 10, 
therefore, ux = 400 w2. 

From the above example, it is clear that the vertical velocity components, Wj and w2, 
are negligibly small, particularly w2. One may doubt the pragmatic value in which 
tremendous efforts have been devoted into the laborious process from which lengthy 
expressions are derived analytically. 

U,, V,   (mm/s) 

Figure 4. Profiles of Eulerian water-particle velocities ux and Vj, 
through laminar boundary layer at various time steps, 
waves T=l sec, incident height H=76mm and 8=45°. 
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J^. it 

Figure 5. Profiles     of 
Eulerian   fluid 
velocities u2, v2 
and Wj through 
the laminar layer 
at various y/L 
locations  and 
time steps t/T. 

The effect of wave obliquity on the magnitude of fluid velocities is given in figure 6. 
From this figure, it is found that ut ~ 10u2 for the case of 9 = 60°, and u2 remains 
seemingly unchanged for all the three 0 cases presented, based upon the same incident 
wave conditions (T=1.0 sec, H=76 mm, d=300mm) except the approaching angles. The 
value of Uj decreases as 0 decreases (see figure 1 for the definition of 0). 

Figure 6. Profiles of the 
maximum fluid 
velocities Uj and 
u2 for the same 

wave conditions 
as in figure 4, 
but for various 
incident angles. 

U, . U2 (mm/si 
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For the cases investigated above, the mass transport velocities (UM2 and VM2) in 
dimensional value are depicted in figure 7. The forward mass transport velocity UM2 
reaches its maximum along the combined-crest alignments, and is minimal along 1/4-tns 
of y/L , where at this latter alignment VM2 is zero. Therefore, all water-particles within 
the short-crested wave system have a net movement forward irrespective of their position 
along y/L In the vicinity of l/8th of y/L the resultant mass-transport velocity vector is 
inclined towards its neighbouring alignment of combined crest. 

Figure 7. Dimensional mass 
transport velocities 
UM2   *"*  VM2 

through a laminar 
boundary   layer 
within a short-crested 
wave  system. 

' | • I • I ' I ' 
-50   -40    -30   -20    -10      0      10     20     30     40     50 

UM2< VM2 (mm/s) 

Within the laminar bottom boundary layer, the bottom shear stress Tbx is defined as 

xbx / p = V (9u/dz) 12_Q   dimensionally. (7) 

The shear stress component in the y-direction xb can be established in a similar manner. 

To the first-order approximation, substituting u: and Vj into equation (7), it yields the 
expressions of Tbx and z.   as follows 

V/P^om^V1 = V2cos(rtky)cos(mkx-at-7t/4), 

Tby I P^om)2^"1 =" ^2 sin(nky) cos(mkx-ot+7t/4), 

(8) 

(9) 

where U and V are the maximum water-particle velocity at the bed calculated from 
the wave theory, Re is the boundary Reynolds number (being U^Sj/V), in which 81 is 
the boundary-layer parameter, V(2V/a). Equations (8) and (9) show a phase shift of n/4 
compared to U and V . Velocity expressions up to second-order can also be used for 
u and v in equation (7) to aerive the shear stress at the bottom. 
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3.    Turbulent boundary layer at the bottom 

Traditionally, the descriptions of an oscillatory turbulent boundary layer in waves 
have been based upon a direct solution to momentum equations. This process, often 
laborious algebraically, yields Eulerian water-particle velocities and mass transport 
directly (for example, Johns 1970, and many others). These approaches considered the 
overall bottom layer as a whole. Kajiura (1968) has given a most detailed mathematical 
treatment in which the whole boundary layer is subdivided into three sublayers. Each 
sublayer had its own characteristic mean turbulent viscosity, assumed time-invariant but 
as a function of vertical distance within each sublayer. Kajiura's solution agreed with 
experimental data available, but its mathematical expression was very complicated. 

Jonnson (1980) has suggested a new approach, in which a universal law of velocities 
near the wall was used. After obtaining the defect velocity within the boundary layer, 
the fluid velocity was then calculated. This new approach was supported by velocity 
measurements available (Jonsson 1963, 1966; Jonsson & Carlsen 1976). Therefore, 
there is no need to derive the fluid velocities within a turbulent boundary layer directly 
from momentum equations. Brevik (1981) has applied this new approach to a 
two-dimensional wave case, working with dimensional quantities directly from the 
leading terms in the governing equation. 

In this section Brevik's two-layer model is examined for the application to short-crested 
waves, and the differences between the laminar and turbulent cases described. 

3.1     Comparison of laminar and turbulent layers 

The main differences between the laminar and turbulent boundary layers are in the 
thickness of the boundary layer, the velocity profiles, and the mechanism of producing 
sediment suspension. 

Jonsson (1980) suggested expressions for calculating boundary-layer thickness 5 and 
shear friction factor fw, for the laminar layer on a smooth wall and turbulent layer on a 
rough bed. He also gave ranges of Reynolds number, based on boundary-layer 
thickness, for these cases. A useful expression for estimating the thickness of a rough 
turbulent boundary layer, 8, is given by 

(5/z0) log(o7zo) = 0.04alm/zo, (10) 

where zQ is the theoretical bed level related to bottom roughness as used by Jonsson 
(1980) and Brevik (1981), and alm is the maximum amplitude of the orbital motion 
calculated from free-stream velocity Uj ( = Ulm/o", where a being the angular 
frequency of wave, i.e. 27t/T). Therefore, in a rough turbulent boundary-layer, its 
thickness is affected by the roughness of the bottom (from the theoretical bed level zQ) 
and the free-stream velocity which is governed by waves propagating above it. 

In the model of time-independent viscosity coefficient, Johns (1970) reported that the 
overall velocity profiles within a turbulent and laminar cases are very similar, except the 
boundary-layer thickness of the former is about 10 times of the latter; in which for the 
laminar case, the boundary-layer thickness was suggested to be about 5(2V/a)1/2. He 
also gave remarks on the distribution of suspended sediment within these layers. From 
knowledge available in boundary layer, it is therefore suggested that, for the present 
investigation, the thickness of a rough turbulent boundary layer at the bottom of a 
short-crested wave system be taken as 10 times that of the laminar case. 
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3.2    Two-layer model of Brevik (1981) 

By employing Jonnson's approach of velocity defect law and time-invariant viscosity 
coefficient Vt(z), Brevik (1981) successfully developed a two-layer model for a 
two-dimensional wave case. Considering only the leading terms, the governing 
momentum equation reduced to 

3u/9t = 3U/3t + a(xbx/p)/3z, (11) 

where u(z,t) is the fluid velocity, U(t) is the free-stream velocity at the outer edge of the 
layer, and tbx(z,t) is the shear stress at the bed (= pVt3u/9z), and the z-axis is vertically 
upwards from the bed. Upon assuming harmonic variations to all velocities ( u, 
U, and defect velocity ud = u-U) and bottom shear stress, in terms of eicn, where o 
is the angular frequency (= 2jt/T ), it yielded 

or finally 
aud/9t=3(vtaud/az)/9z, 

9(Vt du^dz)ldz - ioud = 0, 

(12) 

(13) 

where the mean turbulent viscosity Vt(z) was assumed time independent within the 
boundary layer. It was also assumed that Vt(z) is to be proportional to the distance from 
the theoretical bed level at z = zQ within the lower layer, and became a constant in the 
outer layer from z > A (see figure 8, or figure 1 of Brevik 1981). The theoretical bed 
level at z = z from the real bed was determined by fitting the observed velocity profile 
above the bed to a logarithmic distribution. Brevik (1981) proposed two different values 
for A, the first value of A equal to half of its boundary thickness, and the second A as a 
function of amplitude of water-particle motion close to the bed and shear friction factor 
fw. It is worth noting at this stage that an improper choice of A will produce 
discontinuity to velocity profiles of u/uf and ud/uf on a semi-log scale plot. 

£^(Z) = KUf A 

Figure 8. Assumption of the time- 
invariant  turbulent 
viscosity coefficient V. 
as a function of vertical 
distance, in the two-layer 
model of Brevik (1981). 

The  basic  equation  was  in  dimensional  form.   A dimensionless variable \ = 
(4o"z/Kuf)

1/2 was then introduced into equation (13), which transformed the vertical 
distance z within the boundary layer, where K is the von Karman's constant (= 0.4), and 
uf is the maximum shear velocity at bed. The resultant governing equation, 

Sd\/di,2  +  Idxxjdl  -   Uud = 0, (14) 
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was the standard differential equation for the Kelvin functions of zero-th order, with \ as 
independent variable. The solution to defect velocity ud was related to Kelvin functions 
of the first and second kinds, (ber, bei, ker, kei at the specific levels of z = z0 and z = A 
respectively), and generally in complex variable form. Integration constants were 
determined subject to boundary conditions required. After establishing the defect 
velocity, water-particle velocity u was found from u(z,t) = ud(z,t) - U(t), then phases 
calculated. The new analytical solutions to u and ud and their phases (Brevik 1981) fit 
well with data of Test no.l of Danish measurements (Jonsson 1980, Jonsson & Carlsen 
1976), hence confirming the usefulness of the proposed two-layer theory. For detailed 
derivations and final expressions of ud(z,t) and u(z,t) in each layer, see the original paper 
of Brevik (1981). 

For calculating ud, u and their phases numerically, it is necessary to establish a 
computer program which can reproduce the results of Brevik (1981). A program in 
PASCAL language was written with graphic ability run on a micro-computer. 
Expressions of Kelvin functions are obtained from Abramowitz & Stegun (1964). This 
program reproduced the results of ud, u and their phases as reported by Brevik (1981) in 
his figures 2 to 5, using data of Test no.l of the Danish measurements (Jonnson 1980; 
Jonnson & Carlsen 1976). An example of ud/uf and u/uf calculated from the present 
program is given in figure 9 (for wave and ooundary-layer conditions: T=8.39 sec, 
free-stream velocity U = 2110 mm/sec, max shear velocity uf = 207 mm/sec, thickness 
of the turbulent layer 8 = 60 mm, z0= 0.77 mm, and A = 0.58 = 30 mm). 

Figure 9. Profiles of relative velocities 
ud/uf and uAu, reproduced 
using data of Test no.l 
of Danish measurements 
(Jonsson 1980, Jonsson 
& Carlsen 1976). 

Figure 10 shows the fluid velocity u and defect velocity ud obtained from the said 
conditions, previously presented in figure 9, after being converted to a normal scale 
plot. Because the thickness of the turbulent layer is about 10 times that of the laminar 
case, it can be seen that most of the changes in velocity u in the vertical direction above 
the bed are within the lower 25% of its overall thickness. This region is equivalent to 
about twice of the thickness of the laminar layer, under the same wave conditions. The 
remaining 75% of the thickness has rather uniform velocity profile. 
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Figure 10. Converted fluid velocity u 
and defect velocity UJ profiles 
obtained  from  conditions 
specified for Test no. 1 of 
Danish   measurements 
(Jonsson & Carlsen 1976). 

10 

£5 

I      I I     I 
- 

r4* u 1 — 

iSi- -=K^I 
- 

1000 2000 
Uj.U (mm/s) 

In applying Brevik's two-layer model, it is critical in able to choose a suitable 
thickness for the lower-layer, as can be demonstrated in figure 11. The wave and 
boundary-layer conditions are the same as that produced figures 9 and 10, but with 
variable A, these being A= 1/8,1/4,1/2 and 3/4 of the turbulent boundary-layer thickness. 
Profound discontinuity is obvious for A less than half of its boundary-layer thickness. 
Values of A/8 greater than 0.5 (the case presented in figure 9) had negligible effect on 
the continuity just discussed, even when A/8 reached 0.75. The practical problem is 
how to select the most appropriate value of A/8 for each application. 

Figure 11. Discontinuity in velocity 
profile u/uf on a semi- 
log plot, resulting from 
improper choices of A/8, 
in the two-layer model 
(Brevik 1981). 

u/u, 

Further study showed that the choices of the theoretical bed level z0 from bottom 
roughness is not critical, though affecting the boundary-layer thickness in the turbulent 
condition (see equation 10). Hence, this model can be applied to wave cases with 
reasonably rough bed. Once a proper ratio of A (the upper limit of the lower layer) 
relative to the boundary-layer thickness 8 is selected, say A/8 = 0.5, the turning point 
located near the bottom of u/uf curve in figure 9 may be shifted away from the present 
value of z/8 = 0.02. Given a bottom roughness 5 times the value as used by Brevik 
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(1981), the said turning point will be shifted to z/5 ~ 0.1, modifying the slope of 
velocity profiles u/uf and ud/uf only slightly in the region z/8 < 0.1. 

3.3   Application to short-crested waves 

Brevik's two-layer model (1981) was derived for the case of two-dimensional 
progressive waves. In a three-dimensional case, the flow field is much more complex, 
even to the simplest case of short-crested wave system produced by full oblique 
reflection from a long vertical wall. Preliminary examination using only leading terms in 
the governing equations renders 

3u/at=au/at+3('cbx/p)/az) (i5) 

dv/dt = dV/dt + d(xby/p)/dz, (16) 

and 3u/3x + 3v/9y + 3w/3z =0, (17) 

where (u,v,w) are the fluid velocities, (U,V) are the free-stream velocity components, 
xbx and xb   are shear stresses at the bed in the x and y-directions respectively. 

To apply the two-layer model to this short-crested wave system, dimensional 
expressions of free-stream velocities are required, at each order of approximation. These 
can be obtained from equations (l)-(3). The free-stream velocity components U and V 
contain trigonometric functions such as cos(mkx-ot) and sin(mkx-ot) etc. Expressing 
the real part of "cos(ot)" and "sin(ot)" in exponential form, such that 

cos(mkx-ot) = cos(mkx) eicrt - i sin(mkx) eiCTt, (18) 

and sin(mkx-o"t) = sin(mkx) eiat + i cos(mkx) e1<Tt, (19) 

where i = V-l representing the imaginary part of a complex variable. Unlike Uj which 
was a constant Uj(t) in a two-dimensional case, the leading term in equation (1), 
Ujfoy.t), is now in complex variable form. U^x.y.t) may be split into two terms, one 
containing cos(mkx)eim, and the other in sin(mkx)eicrt, for example 

Uj = e V(g/k) (mco^sinhkd) cos(nky) [cos(mkx) - i sin(mkx)] eicTt 

= (Ulc + iUls)e
iot, (20) 

where Ulc(x,y,z) and Uld(x,y,z) relate to the time-independent velocity expressions 
containing "cos(mkx)" and "sin(mkx)" respectively in equation (20). Similarly, Vj in 
equation (2) becomes 

Vx = - e V(k/g) (nco0 /sinhkd) sin(nky) [sin(mkx) + i cos(mkx)] eicn, 

= (vic + ivis)eim- (21) 

The second-order terms U2and V2 in equations (1) and (2) may receive similar 
treatment, if higher order terms are required. 

To calculate udl(x,y,z,t), which is the defect velocity ud to the first-order, at a required 
location (x,y,z) within the short-crested wave system, equation (15) has to be utilised 
twice, rendering 
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9(Vt audlc/3z)/3z - io udlc = 0, (22) 

and 3(Vtaudls/3z)/az-io udls = 0, (23) 

in which udl and udls are related to the free-stream velocity components of Ulc and Uls 
in equation (20) respectively. The magnitude (or modulus) and phase of udl can be 
calculated for each sublayer, 

udi = udic + iudis' (24) 

finally leading to the magnitude and phase of ur Adopting similar procedure, the 
first-order defect velocity vdl(x,y,z,t), in complex variable form, is given as 

vdi=vdic + ivdis' <25) 

and fluid velocity Vj can be calculated after establishing vdl. 

Based upon the linear theory above, the flow field at a specific position within a rough 
bottom layer of the short-crested waves can be determined analytically and numerically. 
Along the combined-crests, y/L = 0,1/2,1,..., U,aand Uls only are required because 
V, = 0; on the other hand, it needs only Vlc and V j along alignments y/L = 1/4, 
3/4,..., since Uj = 0. Along other alignments, all Ulc, Uls, Vlc and Vls are required in 
calculations because Uj and Vj coexist 

4.      Discussions 

From theory and experiments available, it has been shown that the water-particle 
motions in the bottom layer within a short-crested wave system are quite complex, even 
for the simplest case produced by complete oblique reflection. The resultant wave system 
is most severe in its erosive capacity. To investigate the rough turbulent boundary layer 
at the bed, Brevik's (1981) two-layer model using time-invariant viscosity coefficient 
was here examined. 

As revealed from the numerical calculations, Brevik's (1981) two-layer model is a 
valuable tool in producing a normal velocity distribution through a rough turbulent 
bottom layer within the short-crested wave system. But this model of assuming 
time-invariant viscosity coefficient Vt(z) to each sublayer can only produce a velocity 
profile of u similar to that presented in figure 10. Therefore, Brevik's approach is 
incapable of reproducing a flow reversal in the lower portion of the boundary layer (as in 
figure 4). 

Viewed from the time-varying velocity profiles shown in figure 4 for velocity 
components at the same location (x,y,z) in a short-crested wave system, a 
time-dependent viscosity coefficient Vt(z) is warranted. An ideal time-dependent 
viscosity model will ensure the time-varying nature of the velocity profiles as 
demonstrated in the case of laminar layer, in both magnitude and flow reversibility. This 
has recently been pointed out by Trowbridge & Madsen (1984). It is suggested that a 
model using time-variant viscosity coefficient should be considered before a higher order 
theory is used for the rough boundary layer. 

Although it has commonly been envisaged that a turbulent boundary layer can produce 
a stronger vertical velocity component, w, there is no convincing evidence, from 
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numerical calculation of the said model, that its magnitude is significant. It is therefore 
suspected other mechanisms may also be responsible for the suspension of sediments. 
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