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A Numerical Solution to Transient Wave Induced Harbor Oscillations 
Using Boundary Element Technique 

Vedat Demirel , and Shen Wang^, 

Abstract 
A new numerical technique for solution to transient linear 
long wave induced oscillations is introduced. It is based 
on the boundary element method, which is well recognized 
by its numerical efficiency and convenience. Several har- 
bor models are investigated. Advantages of the proposed 
method as compared to the existing techniques are discussed. 

1. INTRODUCTION 

Studies concerning harbor oscillations can be classified into 
two major groups, periodic wave excitations and transient wave exci- 
tations. The assumption of periodic incoming waves reduces the pro- 
blem from a solution of wave equation to one of Helmholtz equation. 
There are a number of well-established theories available in the 
literature for the time harmonic case. However, only a few studies 
have been reported on the transient problem. The traditional approach 
to the transient problem is to utilize the knowledge of frequency 
response of the harbor and derive the solutions by means of Fourier 
synthesis (Carrier and Shaw, 1969). An alternative approach using 
finite element method (FEM) was introduced by Lepelletier (1980) to 
solve the problem by a time marching scheme with a time dependent 
ocean boundary condition. 

The present study introduces a boundary element method (BEM) 
solution for the transient oscillations of arbitrary-shaped, constant 
depth harbors. Unlike Fourier synthesis approach, this method pro- 
vides the required information in a natural and direct way.  Moreover, 
this procedure requires neither internal cells nor their associat- 
ed domain integrals, making the method especially attractive from the 
computational point of view. 

2. THEORETICAL BACKGROUND 

Most of the existing numerical harbor models emerge on the 
validity of the linear wave theory.  Indeed, good agreement between 
the linear theory predictions and experimental results has been 
reported by various authors, Lee (1969) and Lepelletier (1980), for 
example. Hence, the problem is formulated within the framework of 
linear wave theory.  The theory assumes irrotational flow of an 
inviscid, incompressible fluid, and the wave amplitude to be 
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infinitesimally small.  In addition, the water depth is assumed to be 
constant and the wave length is long enough to meet criterion for long 
wave approximation. 

Under these conditions, the governing equation in two horizontal 
dimensions x and y is given by 

a2$ 

at^ 
^ (- 

32<t>       32<j> 

3x^ 3yz 
(1) 

Here <f> is the unknown velocity potential and c is the speed of propa- 
gation. Following the long wave approximation, c is known as c=(gd)1'^ 
with g and d being earth's gravitational acceleration and the water 
depth, respectively. 

The solution of $ within the domain sketched in Fig-1 is sought 
in the present study. The configuration under consideration consists 
of an interior domain which will be identified as domain II and an 
exterior domain, domain I. Domain II is an arbitrary-shaped, constant 
depth harbor with vertical boundaries.  It is connected to domain I 
with a partially or fully open entrance.  Domain I represents the 
open ocean with semi-infinite boundaries. One part of the boundary 
coincides with the straight coastline extending from -=> to +<*>. The 
remaining part is a fictitious semi-circle of radius R=°°, connecting 
both ends of the coastline. 

Fig-1. Geometric configuration of an arbitrary-shaped harbor. 
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Parallel to the time harmonic model of Lee (1969), the problem is 
formulated in the two regions separately.  In domain I, decomposition 
of the velocity potential <j>j into components is conventional in 
linearized water wave problems: 

•i = •i + <)>r + (2) 

where ^^ is the incident wave potential, <(>r is just its reflection 
as if the harbor did not exist, and <j>s is the scattered potential 
representing the disturbance introduced by the harbor.  Since the 
incident wave potential is normally known, <£•£ and <f,T  are immediately 
determined. Therefore, only formulation and solution of <j>s will be 
sought in domain I. 

The boundary and initial conditions are specified as: 

Domain I Domain II 

Boundary conditions: 

qs=0  on the straight 
coastline 

<j>i+ijir+i))8=<(ill 

qs=~<Jii 

Initial conditions, at t=0: 

qIX=0  on DEA 

0 
3t 

on DA 

8<t>II 
Hi = = 0 

3t 

(3) 

(4-a) 

(4-b) 

(5) 

q=n. and n is a unit outward Here, q is the normal derivative of 
normal vector along the boundary. 

Condition (3) assures that boundaries are impermeable by forcing 
the particle velocities to vanish.  Conditions (4-a) and (4-b) are 
basically necessary to have a continuous surface elevation and fluid 
velocity across the boundary interface of the two domains. Notice 
that condition (4-b) is obtained by differentiating (4-a) with 
3(<t>i+<j>r)/3n=0 being understood. The negative sign in (4-b) 
indicates that the outward normal vectors are directed in opposite 
directions in I and II on DA. The last constraints are due to the 
hyperbolic character of the governing equation where one needs two 
initial conditions. They are chosen to be zero for convenience. It 
implies that the analysis will be started from a moment when the body 
of water in the harbor is at rest. However, this is not on approxima- 
tion but rather a mathematical convenience; as will be seen later, a 
BEM formulation may include any initial state. It is worth mentioning 
that the radiation condition of the time harmonic problem is replaced 
by the causality principle to ensure the mathematical uniqueness. This 
constraint will be imposed in the determination of the Green's function 
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of the problem. For a complete derivation of the Green's function and a 
detailed formulation of the problem, one is referred to Demirel (1986). 

3.   NUMERICAL ANALYSIS 

No analytical solution of the problem described in the previous 
section exists. On the other hand, a numerical solution is always 
possible by utilizing one of the solution techniques depicted in Fig. 2. 

Transient  Linear  Problem 

Superposition of 

Harmonic Solution 

Time Domain Solutions 

Boundary Type 
I 

 1 

Domain Type 

BEM 

</ 

FEM 

"1 

FD 

&£ k 

Fig-2. Classification of available solution techniques. 

The first method is the traditional Fourier synthesis technique. 
This is a two-step procedure in which the transfer function of the 
harbor must be determined first. Afterwards, the transfer function 
and the Fourier transform of the incident wave system are convolved 
in the frequency domain followed by an inverse Fourier transform of 
the product. The second group contains time domain solution techni- 
ques. They can be sub-grouped into two categories, domain type 
solutions and boundary type solutions. Two major differences stand 
out between these categories as shown in Fig. 2. First of all, in 
the domain type technique, determination of the potential at any 
point requires the simultaneous solution of the entire domain. In 
contrast, in the boundary type solution technique, information of 
the boundary potential is sufficient to determine the interior poten- 
tial at any point. Secondly, the open sea region can be extended 
to infinity in the boundary type method without introducing any 
approximation. In the domain type technique, however, the exterior 
domain has to be terminated at a finite distance.  Because of these 
two reasons, BEM is used in this study.  An outline of the method is 
summarized in the following. 

The first step is to transfer the governing differential equation 
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to an integral form. Afterwards, the solution of this integral equa- 
tion is sought.  The resulting integral equation for the wave  equation 
in two dimensions is in the following form (Mansur and Brebbia, 1982): 

t  3R 
4TrX<j)(r,t) = //—(<( 

o I" 3n 
+ - 

c 

V t 

*) dr dx + / / q<j)*dr dT 
o r 

+ --/ (- 
c ft  c 

B  + 
j  o 

3R 
,- ) dfi (6) 

where v denotes the time derivative of $, v •* 34>/3t, q is the normal 
derivative of <j> and R is the distance between the observation 
point r and the source point £, R=|r—5 j. The parameter A is equal 
to 1, 0 or 1/2 for r to be inside, outside or on a smooth part of the 
T boundary, 
given as, 

respectively. Definition of the terms <j> and B are 

2c 
4>* = <|>* (r,t/?,x) = -- H[c(t-x)-R] 

[c2(t_T)2_R2]l/2 
(7) 

2c[c(t~r)-R] 
B = B(r,t/5,x) =   H[c(t-x)-R] 

[c2(t-x)2 - R2]3'2 
(8) 

with   H[c(t-x)-R] 
0 c(t-x)<R 

1 c(t-x)>R 
, a unit step function 

The term <$,    is the Green's function for the two-dimensional wave 
operator, which may be considered as the effect of a source applied 
impulsively at t=x located at r=£. A subscript o, as appeared in 
(6), indicates initial time, t = 0. Integrals over V  are boundary 
integrals, while over fi are domain integrals. All integrals are 
Cauchy principal-value integrals. 

In order to evaluate the line integrals in (6), the boundary is 
discretized into a series of elements and the integrals are computed 
on each element piecewise. The boundary of the harbor ADE is discre- 
tized into N straight segments.  In addition, the time dimension is 
divided into F time steps. Furthermore, functions fy  and q in equation 
(6) are assumed to vary within each element and time step according 
to the space and time interpolation functions such that; 

,T „f 4,(r.,tf)  = vj Y1 f- (9) 
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q(rjttf)   -  v]   Bf   q^ (10) 

f     f Here i|i. and y. are space interpolation functions, y    and 6  are 
time interpolation functions, whereas <|>. and q? are column vectors 
containing the nodal values of ty  and q, respectively, within the jth 
segment. Substituting (9) and (10) into equation (6) and applying a 
time stepping scheme to initiate the time integration always from the 
initial time yields the following set of algebraic equations: 

y T? 

I     [H*f] {^}  -   I   [G**] {qf} . (11) 
f=l f=l 

The elements of the matrices [HF^] and [GFf] are given by 

h\f.   = 4^X6^ 6f F<f,f - /r  ^ ^ /  (yfB+— —)dxdr 
j 3n    tf_i     3T c 

g£ = /r   u? /tf   ef ** dxdr   . (13) 
i     tf-i 

Note that all the domain integrals in (6) are dropped out since ij> and 
3i(>/3t are zero in accordance with the initial conditions (5) and the 
time integrals are evaluated always from the initial time t=0. 

Equation (11) is simultaneously applied to both domains.  In each 
domain, the velocity potential <ji is expressed in terms of the unknown 
normal derivatives of <j> at the harbor entrance. These unknowns are 
determined by satisfying the matching conditions (4) on the entrance. 
Having obtained the derivatives of the potential along the entrance, 
the interior potential is calculated by letting the observation point 
approaching to any interior point desired. 

4.   NUMERICAL EXAMPLES 

In the numerical computations, three model harbors were considered. 
A rectangular harbor and a circular harbor were taken first. Both 
harbors have an uniform water depth and are connected to an open-sea. 
The third is a model of the East and West basins of Long Beach Harbor, 
California. The interpolation functions it., p. and 8 were taken 
as constant whereas yf was taken as linear in the computation. 

The results given here were computed for two incident wave forms, 
an exponentially decaying cosine wave and a solitary wave: 

n1 = A eTa\t\   cos (w0t) (14) 

m = A sech (mt) (15) 

where A, a, m0 and m are the amplitude of the incident wave, a decay 
factor, the incident wave frequency and a dummy frequency parameter, 
respectively. 
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In the following figures, the results of the present BEM model 
were compared against the Fourier synthesis solutions.  In each 
figure, the incident wave system is plotted in the upper part. The 
lower part is allocated for the comparison of two different approaches. 
The solid curve and the circles represent the results of the Fourier 
synthesis solution and the present theory, respectively.  Coordinates 
of the figures were nondimensionalized by suitable parameters. For 
instance, values of the surface elevation were nondimensionalized by 
(rii)max defined as the maximum elevation of the incident wave. 
Likewise, the elapsed time is nondimensionalized either by the period 
of the incident wave, as in the case of exponentially decaying cosine 
waves, or by a representative time scale for the case of a solitary 
wave. For a solitary_wave defined by^_15), the representative time 
scale was taken as T=X/(gd)*' .  Here A, the so-called effective wave 
length, is defined as twice the distance between the peak of the 
sech(mt) and a point at which the amplitude reduces to 0.1% of its 
maximum. 

Case 1: A rectangular harbor 
A fully open rectangular harbor with a width to length ratio b/L= 

0.5 (b=2.5 feet, L=5.0 feet) and a uniform water depth d=0.5 feet was 
considered as the first case. The boundary of the harbor was discre- 
tized into N=32 constant elements with 6 of them placed on the en- 
trance. The observation point was taken to be located at the back 
boundary of the harbor. 

Fig-3 shows the time history of oscillations due to an exponenti- 
ally decaying cosine wave having a frequency equal to the first 
natural frequency of the harbor, kL=l.l.  The figure indicates that 
the maximum amplification for this transient wave is 3.8 and the 
oscillations last a little longer than 4 times the period of the inci- 
dent wave system. 
_   In the next figure, harbor response due to a solitary wave of 
X/L=5.7 was considered. As Fig-4 shows, the magnitude of the first, 
peak, which represents the major impact of the solitary wave, is in 
good agreement although there exist relatively minor discrepancies in 
the subsequent time steps. 

Case 2: A circular harbor 
The second harbor considered is a circular model previously used 

by Lee (1969) with a radius r=0.75 feet, a constant depth d=0.5 feet 
and a 60 degrees gap. For this harbor, the observation point was 
taken at the center of the harbor. The boundary of the harbor was 
discretized to N=30 straight elements with 6 of them located at the 
entrance. 

Fig-5 shows the harbor response due to an exponentially decaying 
cosine wave of kr=0.5. It is seen that the peak amplitude is slightly 
lower but in general agrees well with the Fourier synthesis solution. 
Oscillations last approximately 8 cycles, reaching a maximum 
amplification of 2.9. The subsequent amplitudes are slightly different 
and decay faster in the BEM solutions. 

The solitary wave induced oscillations in the circular harbor of 
r=0.75 were plotted in Fig-6 along with the incident wave systems. 
The  upper part of Fig-6 represents the incident wave system with 
X/2r=12.5. The computed surface elevation at the center of the 
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kL=l.1 

5.8 

Fig-3. A comparison of time history of oscillations at the back 
boundary of a rectangular harbor, b/L=0.5, due to an expo 
nentially decaying cosine wave of kL=l.l with a=0.3. 

e.t i.e <t. 8 5.1 2.0   _ 3.8 
t/f 

Fig-4. A comparison of time history of oscillations at the back. 
boundary_of a rectangular harbor, b/L=0.5, due to a solitary 
wave of X/L=5.7. 
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*.»      6.8      8.0      1B.« 

t/T 
Fig-5. A comparison of time history of oscillations at the center of a 

circular harbor, r=0.75, due to an exponentially decaying cosine 
wave of kr=0.5 with a decay factor a=0.3. 

(n.) 
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l.t 2.8     3.B 
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Fig-6. A comparison of time history of oscillations at the center of 
a circular harbor, r=0.75,due to a solitary wave of A/2r=12.5. 
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harbor is placed in the lower part of the same figure. As Fig-6 
shows, the maximum amplification is 2.2 and there are few minor 
oscillations following this peak. This implies that the incident 
wave is so long that the presence of the harbor practically does not 
perturb the reflected wave pattern. 

Case 3: Long Beach Harbor 
A model of the East and West basins of Long Beach Harbor as 

shown in Fig-7 was considered as the last case.  The same model was 
also used by Lee (1969). The entrance of the harbor is 0.2 feet, the 
water depth is d=l feet and the characteristic length is L=l.44 feet. 
For this harbor, the observation point was chosen at the lower right 
corner of the harbor, Fig-7. The boundary of the harbor was discre- 
tized into N=75 straight elements with two elements located on the 
entrance. 

Observation 
point 

Fig-7. A model of East and West basins of 
Long Beach Harbor, California. 

Fig-8 shows the results of a computation conducted for an 
exponentially decaying cosine wave input of kL=0.6. The figure 
indicates that the maximum amplification is 3.2 and the duration of 
oscillations is approximately 5 times the period of the incident wave 
system. 

The transient response at the designated observation point of 
the Long Beach harbor due to a solitary wave of X/L = 10.5 was 
shown in Fig-9. It is seen that the present prediction matches well 
with the Fourier synthesis solution especially for the leading wave. 
According to the figure, the present theory estimates a maximum 
amplification of 2.5 and the duration of oscillations to be nearly 4 
times the effective wave period T. 

5.  CONCLUSIONS 

A numerical solution to transient linear wave induced harbor 
oscillations using BEM is introduced.  The transient linear long 
waves are focused in two horizontal dimensions penetrating into a 
constant depth, arbitrary shaped harbor. Utilizing the fundamental 
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t/T 
Fig-8. A comparison of time history of oscillations at the back bound- 

ary of the Long Beach Harbor model due to an exponentially 
decaying cosine wave of kL=0.6 with a=0.3. 

Fig-9. A comparison of time history of oscillations at the back bound- 
ary of the Long Beach Harbor model due to a solitary wave of X/L=10.5. 
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solution of Green's function for wave equation in two dimensions, 
only inputs of potential or surface elevation due to transient 
waves at the harbor entrance is required. The fluid domain is 
discretized into two regions but a matching technique is used at 
each time step to evaluate the condition at the entrance. The 
interior potential or elevation is obtained with only knowledge of 
the boundary potential. 

This method has advantages over frequency domain solution in 
that it provides in a natural and direct way the time history of 
oscillations. Moreover, the computation time of the BEM solution is 
considerably less than that of the Fourier synthesis approach.  This 
is because of the fact that a sufficiently large number of frequency 
responses are needed to carry out a proper Fourier synthesis solution. 

Comparing with the theories based on the domain type techniques, 
the BEM approach carries forward some widely recognized priorities, 
such as less data preparation and reducing in the dimensionality of 
the problem. Also, solution in the exterior domain can be obtained 
easily without any approximation on the boundary conditions at the 
infinity.  In contrast, in the FEM, a time dependent boundary condi- 
tion must be specified along a large semi-circle in the open sea to 
avoid an artificial reflection. The accuracy of the results and the 
computation time are closely related to the choice of the radius of 
this circle. 
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