
CHAPTER 4 

Statistical Modelling of Long-Terra Wave Climates 

Richard Burrows* and Barham A. Salih** 

Abstract 

The paper discusses the long-term statistical properties of ocean and 
coastal wave climates derived from the analysis of instrumental wave 
data. The aim of the work reported has been to determine the 
theoretical distributions, from those commonly used in analysis of 
wave data, which best describe the joint probability of significant 
wave height, Hs, and mean zero-upcrossing period, Tz. A method of 
modelling the wave climate in this manner has been developed utilizing 
parametric means of specification. The data base used in the study 
covers records from 18 sites around the British Isles. 

Introduction 

Mathematical models considered previously for this application have 
been examined as part of the study. Ochi (1978) proposed the use of a 
bi-variate (2-dimensional) Log-Normal distribution for the joint 
probability density function (pdf) denoted by p(Hs,Tz). This can be 
defined in terms of the first and second order statistical moments of 
the marginal pdfs of both Hs and Tz and a measure of the correlation 
between these wave properties. Appendix 1 presents a summary of the 
relevant mathematics for this and other probability distributions 
discussed herein. 

Whilst the fit shown by Ochi for the Log-Normal distribution, applied 
to various data sets, was good for the bulk of the probability mass 
the tails, in particular that of Hs, were not well matched beyond a 
cumulative probability of about 0.99. It is this region which is 
often of interest in engineering design and a need for improved 
modelling of extremal (Hs,Tz) sea states has recently been identified 
by U.K. Department of Energy (1986). 

As part of a research programme aimed at wave climate synthesis by the 
National Maritime Institute (NMI, but now British Maritime 
Technology), a development of Ochi's modelling was proposed by Fang 
and Hogben (1982) . This involved the inclusion of a measure of the 
skewness in a term modifying the Log-Normal form of the marginal 
distribution of Hs. 

The joint pdf, p(Hs,Tz), can be expressed as a product of the marginal 
pdf of Hs and the conditional pdf of Tz (given Hs), i.e. 
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p(Hs,Tz)   = p(Tz/Hs).p(Hs) (1) 

Houmb and Overvik (1976) utilized the form of this equation for the 
description of wave climate off the coast of Norway. For both the 
marginal distribution of Hs and the conditional distribution of Tz, 
they employed a 2 parameter Weibull distribution (equivalent to the 3 
parameter Weibull but with A-0, see Appendix 1). Parameters B and C in 
p(Tz/Hs) were then specified as functions of Hs, following regression 
for their sites under study. 

More recently Haver (1985) has proposed a similar form of modelling to 
that of Houmb and Overvik but with the conditional distribution of Tp 
(the spectral peak period, replacing Tz) fitted to a Log-Normal 
distribution. The marginal distribution of Hs is described in the 
lower region by the Log-Normal distribution also but for the upper 
tail (Hs > a, where a is a chosen threshold) a 2 parameter Weibull 
distribution is employed. 

This latter model has not been investigated herein but the other 
methods described above have been applied together with several 
modified approaches. These include; (i) an extension of Houmb and 
Overvik's model by the use of the 3 parameter distribution for both 
marginal and conditional probability distributions, (ii) use of a 
mixed Weibull and Log-Normal model with p(Hs) described by the former 
and p(Tz/Hs) by the latter, (iii) direct specification of p(Hs,Tz) in 
terms of a 2-dimensional Weibull distribution. For the latter, the 
derivation given by Kimura (1981) for application to short-term wave 
climates has been utilized. Relevant equations are contained in 
Appendix 1. 

The study has been conducted in 3 parts. Firstly, the goodness of fit 
of the different models to the data was investigated, the models being 
fitted using statistical moments of the various data samples. This 
provided a shortlist of preferred probability distributions. Secondly, 
empirical relationships between the significant wave height, Hs, and 
both the conditional statistics of Tz and the parameters of the 
different models were investigated. In this way it was hoped to 
improve the means of description of the Tz domain of the wave climate. 
By considering the degrees of exposure and wind field statistics of 
the different sites trends were observed and, ultimately, regression 
equations linking Tz statistics to the marginal statistics of Hs have 
been established for 2 groups of sites, loosely termed 'oceanic' and 
'coastal'. The third and final part of the study has been to use the 
regression equations for specification of the parameters of the 
different models and to again assess their respective merits. 

Data 

The data base used in the study consisted of scatter diagrams 
(bi-variate histograms of the 3-hourly observation of Hs and Tz) 
covering periods of measurement ranging from 1 to 7 years. An example 
of such a diagram is given in Fig. 1. Locations of the various sites 
are indicated on the map in Fig. 2. 

The data set is far from ideal since for few sites do recordings 
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exceed one or two years duration. In consequence, the effects of 
variability in annual wave climate will potentially cloud any 'between 
site' trends which may be present. Whilst these inadequacies of the 
data will have an unquantifiable effect on the results developed, this 
should not be so large as to undermine the value of the study. 

FIGURE 1  BI-VARIATE HISTOGRAM, OR SCATTER DIAGRAM, 
OF H„ AND T„ 
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FIGURE 2  LOCATION MAP SHOWING SOURCES 
OF WAVE DATA 

Analysis of Scatter Diagrams Forming the Data Base 

The statistical properties of Hs and Tz computed from scatter diagrams 
for the 18 sites are listed in Table 1. These parameters (mean, 
standard deviation and skewness of the marginal distributions and the 
correlation coefficient) can be used to define each of the theoretical 
probability distributions referred to above (and in Appendix 1). The 
Weibull distribution is most conveniently expressed in terms of 
parameters A,B,C, each being related to the statistical moments, and 
these are also included in Table 1. 

Marginal Distribution of Hs: The marginal histograms of Hs from the 
data sets have been compared against the (3 parameter) Weibull, 
Log-Normal and Modified Log-Normal (NMI) distributions. Fully 
objective 'method of moments' fitting has been used in each case. 
Examples, in Fig. 3, of the observed frequency histograms with 
theoretical distributions superimposed show each of the above to 
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TABLE 1  STATISTICAL PROPERTIES OF SCATTER DIAGRAMS FORMING DATA BASE 

1                                 1        Mar8i»,lHS           1   j        H.rslnalTs          |   |               j.        „.        ^ „,           ,   ,        „, ginal Tz 

1                            1    g.    | «H>    1 xHa    1  1   T.   | .T,    | 4,    1  |            II   ",   1   ',   1   •,   M   lj   1   1,   H, 

I   Seven  Stones        j   2.36   j   1.39   |   1.16   |    |7.72     ]1.52     |0.45     1    |   0.189   U   0.40 2.15 1.43   |   [   4.39 3.75 2.32 

i   South Uiat            1   2.44   |   1.33   |   0.96   |    J 6.33     11.42     |0.20     |    |   0.706   ||   0.37 2.31 1.60   |    |   2.53 4.27 2.90 

1  W S Alpha              |   3.06   |   1.67   I   1.08   |    |8.31     11.26     |0.23     |    |   0.592   [|   0.62 2.71 1.49   |    |   5.03 3.68 2.81 

|   V.   S.   India         |   3.36   |   2.07   |   1.44   |    |9.43     11.29     ]0.52     |    [   0.617   ||   0.80 2.75 1.24   I    |   6.75 3.03 2.19 

|   V.   S.   Jullott     |   3.38   |   2.04   |   1.32   |    |9.54     U.52     |0.49     |    |   0.639   ||   0.72 2.88 1.31   |    |   6.33 3.62 2.23 

I   Faraita                     |   2.81   |   1.51   |   1.06   |    [7.40     ]1.28     |0.51     |    |   0.596   ||   0.57 2.48 1.51   |    |   4.73 3.01 2.19 

|   Galloper LV.        |   1.36   |   0.81   1   1.38   |    |4.66     |0.91     |0.41     |   |   0.390   j|   0.33 1.11 1.28   1   |   2.62 2.30 2.39 

|   Tongue  LV.            1   0.93   |   0.40   |   0.75   |    |4.83     |0.86     |0.67     |    |-0.021   j|   0.23 0,79 1.84   1   |   3.23 1.81 1.95 

|   Eddystone  LH.     |   1.17   |   0.81   |   1.59   |    |4.83     |1.12     |0.74     [   1   0.646   ||   0.23 0,99 1.16   |   1   2.84 2.24 1.84 

|   Varna  LV.               |   1.24   |   0.76   ]   1.43   |    [5.62     |0.84     |0.75     [    |   0.064   ||   0.28 1.02 1.25   |    [   4.13 1.68 1.B4 

j   Scacweather Bk.i   1.17   1   0.87   j   0.94   |    17.00     j1.86     j0.55     1   ]   0.299   |]   -.21 1.54 1.62   |   |   3.23 4.26 2.14 

j   St.  Gowan LV.      [   2.01   |   1.27   |   1.10   |    |6.68     |l.42     |0.49     |   1   0.342   ||   0.17 2.04 1.48  |   [   3.69 3.37 2.22 

I   Dowsing                   |   1.37   |   0.83   |   1.42   |   |5.]7     |1.17     |0.42     |   ]   0.557   ||   0.34 1.11 1.26   |    |   2.56 2.9S 2.37 

|   North Carr  LV.   |   1.11   |   0.76   |   1.51   |    |5.79     I 1.30     |0.33     |    |   0.489   \\   0.20 0.97 1.20   |    |   2.68 3.50 2.56 

ISmlth's  Knoll LVl   1.09   |   0.67   |   1.31   ]    |6.<t0     [1.04     [-.15     |    I   0.523   |'[   0.21   |   0.96 1,32   |    |   2.40 4.39   |   4.36 

|   Hersey Bar  LV.   |   1.23   |   0.71   |   1.76   |    |4.97     [0.91     [0.67     |    j   0.624   | j   0.46   |   0.79 1.08   |    |   3.27 1.92   1   1.95 

iMorecambe  Bay  LV|   1.07   |   0.77   |   1.34   |    J3.76     [1.26     [0.72     |   |   0.679   |,1.0.08   |   1.07 1.30   |    |   1.48 2.56   1   1.88 

[Cardigan Bay         j   1.01   j   0.69   j   1.19   |    15.89     j 1.47     [1.25     [   1-0.053   11   0.05 1.05 1.41   1   |   3.91 2.16 1.36 

FIGURE 3  MARGINAL FREQUENCY HISTOGRAMS OF H 
(note: percentage frequency = p(H )4H . 100) 

reasonably describe the main probability mass. An indication of 
relative performance, in terms of 'goodness-of-fit1, can be obtained 
from an application of the \2  test.  The %2 statistic is defined as: 

A   Ei (2) 

where Oi and Ei are the observed and expected frequencies for class 
(1) of (k) classes. Because, generally, the number of classes did not 
conform to the requirements of the standard test, for the relevant 
sample sizes, resulting values of \2 cannot be related to appropriate 
'levels of significance' in the usual way. Numerical values have, 
therefore,   been  used  as   only  qualitative   indicators   of 
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goodness-of-fit. Utilizing this approach, and making allowance for 
the potential departures of the Weibull fit for the lowermost classes 
arising from the imposition of the location parameter A, this 
distribution produces the best fit. Indeed, this slight limitation 
associated with the Weibull distribution is restricted to a region 
(low Hs) of little practical significance (Salih, 1986). 

FIGURE 4      MARGINAL CDF's OF H, 
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However, directing attention to the cumulative distributions of Hs the 
Weibull distribution is most clearly superior, as may be seen from 
Fig. 4. The NMI modification has not been found to improve the basic 
Log-Normal fit in the tails, a result which was borne out 
quantitatively from a Kolmogorov-Smirnov statistical test. Again, for 
the same reasons as those discussed above this goodness-of-fit test 
could not be applied rigorously. Nevertheless, the Weibull 
distribution performs most adequately and satisfied the test at a 5% 
significance level for a number of the data sets. 

Marginal Distribution of Tz: The marginal distributions of Tz were 
treated in a similar way to that described for Hs above. In this case 
all three distributions showed a good fit to the data over the whole 
range of periods. Again, the Weibull distribution produced overall 
the lowest \2 values and generally showed the closest fit to the cdf. 
In view of the satisfactory behaviour of all distributions in the 
extreme tail the Kolmogorov-Smirnov test was not applied. 

Conditional Distribution of Tz: Fig. 5 shows an example of the 
conditional frequency histograms of Tz for various classes of Hs 
forming the scatter diagrams. Both Weibull and Log-Normal 
distributions follow the data closely. In addition, a 2 parameter 
Weibull distribution and predictions from the fitted 2-dlmensional 
Log-Normal and Weibull distributions have been considered. \2 

estimates have been made for all conditional distributions at each 
site and are tabulated in (Salih, 1986). These results showed the 3 
parameter Weibull and Log-Normal distributions to provide the best 
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fits with near equal merit. The 2 parameter Weibull distribution 
adopted by Houmb and Overvik is unable to locate the central 
probability mass in many cases and produces large x2 errors. Of the 
two 2-dimensional distributions the Weibull form was found, in this 
test, to consistently produce the better fit over the Log-Normal. 

FIGURE 5  CONPITIONAL FREQUENCY HISTOGRAMS OF Tz 
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Joint Distribution of Hs and Tz: On the basis of the above findings 
contour maps overlaying the scatter diagrams were produced with the 
joint probability p(Hs,Tz) defined by: 

(1) p(Hs)-Weibull, p(Tz/Hs)-Weibull; (W-W) 
(2) p(Hs)-Weibull, p(Tz/Hs)-Log-Normal; (W-LN) 
(3) p(Hs,Tz)-2-dimensional Log-Normal; (2DLN) 
(4) p(Hs,Tz)-NMI modification to (3); (NMI) 
(5) p(Hs,Tz)-2 dimensional Weibull; (2DW) 

In order to establish the relative goodness-of-fits of these different 
approaches a 2 -dimensional \2 computation was made. This was 
equivalent to the application of Eq. 2 to the conditional frequency 
histograms of Tz for each class of Hs in the scatter diagram with the 
resulting values summed to give an overall \2 estimate. Table 2 
presents these findings which show that approach (1) above is best 
able to represent the characteristics of the data sets considered. 
Approach (2) is only marginally inferior. The Weibull distribution 
(5) again shows substantial improvement over the other 2-dimensional 
distributions. 
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TABLE 2 
2-DIMENSIONAL x" VALUES FOR COMPARISON 
OF SCATTER DIAGRAM OBSERVATIONS AGAINST 
VARIOUS THEORETICAL DISTRIBUTION FITS, 
USING METHOD OF MOMENTS 

ISmith's  Knoll  LV. 

iNorth  Carr LV. 

| MERSEY  BAR  LV. 

IHORECAHBE  BAY LV. 

] CARDIGAN  BAY LV. 

I   mi   I 
H 1- 

2DH     I 
 1 
1501.21 

402.4[ 

2105.1[ 

101.0| 
 1 

216.6| 
 1 

86.91 
 1 

42.2| 
 1 

S17.2| 
 1 

240.9! 
 1 

196.2| 
 1 
1845.9 

984.0! 637.] 

1577.61 

92.5| 
 h 

957.6 

796.8 

149.0 

509.5 

127.01  119.7[ 

2747.3J 1930.4! 

997.3|  877.9! 

Modelling the Joint Distribution of Hs and Tz 

Having assessed the relative merits of the different probabilistic 
descriptors of p(Hs,Tz) it remains to develop means of modelling from 
the minimal amount of wave climate data that may be available. In 
this respect attention is focussed on the specification of the Tz 
domain, since marginal Hs statistics can be adequately established 
using existing methods. These include the various wave forecasting 
and hindcasting techniques from wind data, recently reviewed by 
Holtuijsen (1983) and the semi-empirical approach developed by British 
Maritime Technology in the U.K. and marketed as 'NMIMET' which uses 
both windspeed and visual waveheight archives (Andrews et. al., 1983). 

A first step in this exercise is to establish empirical relationships 
to link the various statistical properties of Tz, in both the marginal 
and conditional domains, to those of Hs. From an initial 
investigation of this nature it was found that the data could be 
conveniently categorised into three groups, termed 'oceanic1, 
'coastal' and 'bays/estuarial' and the placements into these groups 
are indicated in Table 1. The statistics necessary for specification 
of the different probability models were then obtained for each group 
using 'least-squares' regression to the statistics of Hs. Due to the 
limited nature of the data bases, simple regression equations of the 
form; 

Y = a.(Hs)b.(o-(Hs))
c.(X(Hs))

d 
(3) 

were used where Y is any of the required Tz statistics and (a,b,c,d) 
are the regression coefficients. 

In the event, due to the small size of the 'bays' group this has not 
been treated by regression until such time that further data sets are 
incorporated into the data bank. Resulting regression equations are 
summarised in Appendix 2 but it must be appreciated that these would 
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be continuously updated as new data is added. The regression 
equations produced mean relative errors of about 10% (3.8-17.9%) when 
compared with the various data sets in each group. The 'oceanic' 
group produced smaller errors than the 'coastal' group of sites. 
Dealing with each statistic in turn:- 

Conditional Mean E{Tz/Hs}: Conditional mean values for each class of 
Hs for various sites are plotted in Fig. 6. With increasing Hs it was 
anticipated that the values of E{Tz/Hs} would become equivalent to the 
Tz values of the associated wind generated sea states, since the 
effects of swell would diminish. This was substantiated by the 
superimposition of such relationships based on the moments of 
Pierson-Moskowitz spectra onto the plots. In S. I. units this can be 
expressed as: 

E{Tz/Hs) 3.55.(Hs)' (4) 

Departures from this relationship for the lowest classes of Hs, 
therefore, give an indication of the presence of swell conditions at 
the different sites. A systematic variation from site to site in this 
respect is observed where the most exposed locations generally show 
the greatest departures. To model this behaviour a linear variation 
of E(Tz/Hs} with Hs has been assumed, defined by an intercept of the 
period axis K and slope v . Regression using the data sets for the two 
climate categories, as appropriate, produces the fits shown in Fig. 6. 
Also included here are the relationships output from the use of the 
relevant regression equations in the 2-dimensional models. 

FIGURE 6  RELATIONSHIP BETWEEN CONDITIONAL MEAN VALUE OF T7, 
E(TZ/HS), AND Hs 
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groups used in the regression exercises.   From the general trends 
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observed a quadratic variation was chosen for the 'oceanic' group and 
an exponential decay for the 'coastal' group. Regression equations 
for these are given in Appendix 2 and involve the marginal standard 
deviation &crz\ which is itself expressed in terms of a regression 
relationship. Resulting functions are shown on the graphs. Behaviour 
of the fitted 2-dimensional probability models are again included and 
in several instances these show serious divergence from the observed 
trends. This indicates the inflexibility of these theoretical 
functions to describe features of the scatter diagrams in close 
detail. 

FIGURE 7  RELATIONSHIP BETWEEN CONDITIONAL STANDARD DEVIATION OF T~, 
«{TZ/HS), AND Hs 
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The various data sets taken individually show, in Fig. 7, significant 
departure from the regression functions illustrating the approximate 
nature of the modelling and pointing to a need for further data so 
that segregation into additional groupings may be made practicable. 

Conditional Skewness X 
A 4(Tz) • 

(Tz/Hs) and Weibull Parameters A(xz/Hs) 
and 

Definition of the 3 parameter Weibull distribution normally 
requires sample estimates of the first three statistical moments (see 
Appendix 1) . However, the reliability of these estimates diminishes 
with the 'order' of the statistic for samples of limited size. In 
consequence, the computed values of skewness, X, being a third order 
statistic, show much greater scatter than that shown by E{Tz/Hs} and 
^(Tz/Hs) wn:LCh are determined from the first and second order moments 
respectively. This problem is particularly acute for the highest 
classes of Hs where the number of observations forming the samples are 
small. The scatter observed in plots of ^(xz/Hs) aSainst Hs (Salih, 
1986) was such that no underlying trend could be detected and they are 
not presented here. 

As an alternative approach to the full specification of the 3 
parameter Weibull distribution by 'method of moments', an empirical 
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method was considered for definition of parameter A. Computation of 
remaining parameters B and C is then achieved from the first two 
moment estimates which are also necessary for fitting to the other 
probability distributions under consideration here. 

^(Tz/Hs) 
periods in the scatter diagram.  If the notion of a maximum 'sea state 
steepness', S, is taken to be the ratio of Hs to a deep water wave 
length expressed in terms of this minimum wave period, it can be 
expressed as: 

S - 2*.Hs/{g.(A(Tz/Hs))
2) (5) 

Various steepness curves defined in this way were superimposed on the 
scatter diagrams, see Fig. 1, and a value of 1/12 was found to provide 
an upper envelope of the observations consistently for the majority of 
data sets. This empirical relationship has thus been incorporated 
into the method of modelling for the 3 parameter Weibull distribution. 

A similar situation arises when employing the 2 -dimensional (3 
parameter) Weibull distribution since in this case an estimate of 
A/^zs, the lower limiting value of Tz from the marginal data, can 
render unnecessary the estimation of the sample skewnesses. In this 
case values of 4.0 and 3.0 have been adopted intuitively from 
observation of the scatter diagrams for the 'oceanic' and 'coastal' 
groups respectively. 

Linear Correlation Coefficients P(HS_TZ) 
an<* ''(loKfHs)-loE(Tz)V These 

statistics are required in the specification or the ?-dimensional 
Weibull and Log-Normal distributions respectively. Sample estimates of 
the former are included in Table 1 and regression equations are given 
in Appendix 2. 

Synthesis of Scatter Diagrams using the Regression Equations: 

Test against Original Data Base: Applying the regression equations to 
each of the probability models provides a means of testing each 
approach on equal terms. The data input in these circumstances are 
the relevant statistics of Hs and the site exposure group, which leads 
to the appropriate regression equations. 

Table 3 lists the 2-dimensional \2 values per unit observation for all 
sites with the exception of the 'bays' group. Overall, approach 1 
(W-W) produces the minimum departures from the observed data as 
measured by this test whilst approach 2 (W-LN) produces the best fit 
in more cases. Both of these 'marginal/conditional distribution' 
approaches to the joint probability modelling are better than the 
2-dimensional theoretical models although the Weibull form is only 
slightly inferior. However, although the x2 values do not show great 
disparity between any of the models, the 2-dimensional versions are 
significantly less able to closely represent the distributions of Tz 
for the higher Hs classes. This can be seen from the frequency 
histograms in Fig. 8 and the scatter diagrams in Fig. 9. It is 
immediately apparent that in the predictive mode departures from 
observed histograms are substantially greater than those associated 
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Seven Stones 

South Ulst 

W. S. India 

W. S. Juliett 

Scarweather Bk. 

St. Gowan LV. 

Smith's Knoll LV. 

W-LN | 2DLN  |  NHI 
0,1007j 0.2434J 0.1685 
 1 y  
0.1521]   0.1836]   0.1677 

>.2650|   0.2182]   0.2367 

0.25£4|   0.1932|   0.2145 

0.0826|   0.0956|   0.1229 

0.12S9|   0.1126 
 1  
0.7661J   0.7191J 

0.7114|   0.752C 

0.2999J   0.1817| 

0.9474| 0.9803| 0.9677| 
 1 1 1 
0.6047| 0.40041 0.5050] 
 1 | | 
0.4353|   0.3550]   0.2574| 

TABLE 3 
DIMENSIONAL   \* -VALUES,   PER   UNIT 
OBSERVATION RESULTING FROM APPLICATION 
OF REGRESSION MODELS TO ORIGINAL DATA 
BASE 

TABLE 4 
2-DIMENSIONAL  *2-VALUES,   PER  UNIT 
OBSERVATION RESULTING FROM APPLICATION 
OF REGRESSION MODELS TO INDEPENDENT 
DATA 

O.2709|   0.2197|   i 
——I——f" 

0.8912|   0.7454|   0.7398|   0.5673| 

North Cflrr  LV.     ]0.25O3]   0.2816|   0.2199J   0.2726]   0.2302] 

No  of   'Firsts' 
5.453       5.297 

s,.« W-W W-LN 2DLN NMI IBM 

W.   S.   Lima 0.1077 0.0790 0.0895 0.0808 0.1687 

Owers  LV. 0.4213 0.4307 0.2561 0.2523 0.2681 

Cardigan Bay 0.4937 0.4842 0.5494 0.5264 0.5421 

with the earlier analysis phase. 

Test against Independent Data: Data sets from W.S. Lima, Owers light 
vessel, and Cardigan Bay (considered earlier but not used in the 
regression), see Fig. 2 , have been compared against those synthesised 
by the models, Table 4 shows resulting normalised 2-dimensional x2 

values. With such a small set of test data results cannot be 
conclusive but, contrary to the above findings, in these tests at 
least, the 2-dimensional models perform with comparable accuracy to 
the 'marginal/conditional' models. Further testing is clearly 
necessary. 

FIGURE 8  CONDITIONAL FREQUENCY HISTOGRAMS OF T2 COMPARED AGAINST 
REGRESSION MODEL OUTPUTS 
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FIGURE 9  CONTOUR PLOTS FROM REGRESSION MODELS SUPERIMPOSED OVER 
OBSERVED SCATTER DIAGRAMS 
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Conclusions 

(1) From an analysis of scatter diagrams from 18 sites around the 
British Isles it has been found that the 3 parameter Weibull 
distribution provides a better fit than the Log-Normal distribution to 
the marginal properties of Hs and Tz whilst both functions describe 
with near equal merit the conditional behaviour of p(Tz/Hs). 

(2) Regression equations linking the statistics of the various 
probability distributions considered to the statistical moments of Hs 
have been established on the basis of two categories of site exposure, 
loosely termed 'oceanic' and 'coastal'. Further segregation of site 
classification is not practicable until the data base is extended. 

(3) Links between site category, exposure conditions (such as 
'effective fetch' and wind field strengths) and Hs statistics are 
currently under investigation although preliminary findings have 
proved inconclusive. 

(4) Synthesis of wave climates when tested against the data sets 
available have shown the relative accuracy of the different approaches 
to follow the rank order:- 

1) p(Hs)-Weibull, p(Tz/Hs)-Weibull 
2) p(Hs)-Weibull, p(Tz/Hs)-Log-Normal 
3) p(Hs,Tz)-2-dimensional Weibull 
4) p(Hs,Tz)-NMI modified 2-dimensional Log-Normal 
5) p(Hs,Tz)-2-dimensional Log-Normal 

(5) Limited tests of the regression based models to independent data 
have not clearly substantiated the above and, in consequence, further 
validification is necessary. 
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Appendix 1 : Probability Distributions 

The probability density function (pdf) of a random variable x is 
denoted by p(x) and the cumulative distribution function by P(X), 
where, 

X 
P(X) - Prob(x < X) -  /  p(x) dx (1.1) 

The various forms of probability distribution considered herein are as 
follows:- 

(i)  Weibull Distribution 

. .   (x-A)c'' r , 
P(x) -        .C.exp {- (1.2) 

where A, B and C are constants, representing location, scale and shape 
parameters of the distribution. These parameters are related to the 
statistical moments of x as follows:- 

Variance, a\  - E{(x-S)2} - B2[r(l+2/C) - r2(l+l/C)] 
Mean,     x = E{x) - A + Br(l+1/C) 

2 
X 

[ru+3/o - 3r(i+2/o ru+yc) + 2r3(i+i/c)] 
Skewness,  X - _ ;    .^  

[r(l+2/C) - r2(l+l/C)]3^     ~3) 

where T is the Gamma function 
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(ii)    Log-Normal Distribution 

p(x)  = l       .exp   {-  _1_  (log  (x)   -  a)2} (1.4) 

Jli xb 2b2 

where parameters a and b are the mean and standard deviation of log(x) 
and are related to the moments of x as follows:- 

x - exp (a + b2/2} 
(r2x -exp {2a + b

2}[exp(b2} - 1] (1.5) 

In the context of the paper, x can take the form of either Hs or Tz in 
the above equations. However, in the remaining 2-dimensional 
distributions it is convenient to make direct reference to the wave 
parameters. 

(iii) 2-Dimensional Log-Normal Distribution 

p(Hs,Tz) -  l       . X ,exp{  ~R   1 
Hs.Tz     '      ~~      °/1 ~2 JTX^       2<1-Aht) uht 

andR= [<h^2 - 2»       ^     .   «=-*>  +  ^
2h (1.6) 

 j     rht               5 J x   ' 
^h ffh      fft fft 

where h = log(Hs) ; t - log(Tz) ; (K.o^) and (t,(rt) are the equivalents 
of (a,b)  in Eq.  (1.5), representing the fit parameters for the 
respective marginal distributions; and p^t is the linear correlation 
coefficient,  pht - E ( (h-E) . (t-t) }/<rh<rt (1.7) 

(iv)  2-Dimensional Weibull Distribution 

m-1  n-1      -,     m      n      m/2 n/2 
p(HsN,Tz„) - _ HsN TsN exp{- _ (4 Hs,, + *,TzN)} .I0(HsN.TzN. y/0) 

4(3 2(3 
(1.8) 

where I is the Modified Bessel function of zero order; 7 is a 
correlation parameter linked to the linear correlation coefficient (of 
the form of Eq. (1.7)) as follows: 

^nri-lj r(n+l) [F(. 1 . _ 1 . 1; jy
2^ _ x] 

n      m    n    *i*2 
p _   .. .     — ; p - *, *2 - 72 

[r<^> - r2&] [r(^) - r2(^)] d.9) 
/ 

F is the Hypergeometric function; m s CH  n = CT , $ = ^ ^Hs)"1' uHs, " = ^Tz> *, =2 VDHs^ 

*2 ~ \  ^BTz>n' HsN H (Hs " AHs> and TzN ~  (Tz " ATz)• 

Parameters A, B and C are the Weibull parameters from the marginal 
distributions of Hs and Tz as appropriate. 
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Appendix 2 : Regression Equations 

In the following (0) represents the 'oceanic' group of data sites and 
(C) represents the 'coastal' group. Using the definition of Eq. (3), 
most statistics have been expressed in the form, 

Y-a (Rs)
b (ff(Hs))

c (X(Hs))
d 

"(Tz) 

p(Hs-Tz) 

P(logHs-logTz) 

* for 
for 

(0) 4.482 0.51 -0.11 0.70 
(C) 8.758 -0.67 0.80 -0.41 
(0) 11.453 -3.55 3.69 -1.40 
(C) 2.984 -1.59 1.75 -0.75 
(0) 2.329 -2.88 4.23 -2.71 
(C) 0.348 -0.28 0.14 1.26 
(0) 3.353 -3.73 5.48 -3.68 
(C) 0.429 -1.20 0.30 1.03 
(0) 2.872 0.85 -0.44 1.12 
(C) 6.510 -0.42 0.68 -0.54 
(0) 3.484 -2.72 2.24 -1.59 
(C) 0.326 1.05 -1.11 0.82 
(C) 3.0 -1.40 1.70 -0.88 
(C) -0.172 -1.10 0.305 0.531 

'coastal' sites: cVjz/Hs) = H  exp (-r  Hs) 
'oceanic' sites: o-(-Tz/Hs) - (0.75 - 0.01 Hg + 0.07 Hg

2) a (Tz) 




