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ABSTRACT 

This paper has dealt with the dynamic response of offshore 
structures to the ocean waves. In order to establish the calculation 
scheme for offshore structures, the methods of transfer matrices and of 
structural-property matrices have been introduced and applied to the 
analysis of dynamic response of pile structures. The validity of these 
calculation methods have been verified by the experiments in the 
laboratory. 

INTRODUCTION 

The need for drilling oil from the sea bed has induced the progress 
of ocean structures until now, and much more structures should be 
constructed to extract the new sources and energies from the oceans in 
the future. Then, more precise design of structures should be demanded 
with considering the dynamic behaviours from the viewpoint of 
reliability and economical efficiency. 

The purpose of this paper is to advance the calculation scheme of 
dynamic analysis of offshore structures and to clarify the 
characteristics of the dynamic response to waves. The structural forms 
treated in this paper are as follows: (1) a vertical small diameter 
pile, (2) a platform supported by four small diameter piles and (3) a 
vertical large diameter pile. These three structures are analysed with 
modeling as a multi-degrees-of freedom system by using the methods of 
transfer matrices and of structural-property matrices. 

The method of transfer matrices is suitable for the analysis of 
harmonic vibrations, and this method has already been applied to the 
vibrational analysis of offshore structures by Galther and Billlngton1. 
However, only the monochromatic concentrating forces were used as the 
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external forces and no calculations have been performed by using the 
wave forces in their study. Then, in this paper, the authors advance 
their study and indicate the calculation method for the ocean waves. In 
the case of a small diameter pile, not only the small amplitude wave 
theory but also the Stokes wave theory are applied to the Morison 's 
formula to explain the resonant characteristics. In the case of a large 
diameter pile, MacCamy-Fuchs'diffraction theoryais used as the equation 
of wave force in stead of Morison's formula. 

The method of structural-property matrices^ is convenient for 
calculating the transient response with including the initial conditions 
or the random vibrations induced by irregular waves. In this paper, this 
calculation method and the results of some model calculations are shown 
mainly in the case of periodic waves. 

In order to discuss the validity of these calculation methods and 
to find the characteristics of real vibrations, the laboratory 
experiments are conducted in the wave tanks by using the model 
structures mentioned above. 

METHOD OF TRANSFER MATRICES 

EVALUATION OF TRANSFER MATRICES i) 

The coordinate system is shown in Fig.1. The share force in the 
direction of the z-axis and the corresponding displacement are denoted 
by Vz and w respectively. The bending moment around the y-axls and the 
corresponding slope are denoted by My and i|; respectively. Henceforth, V2, 
My, w and ip are used as the complex amplitudes. The amplitudes are 
generated by eliminating from their real quantities the time part 
oscillating with an angular frequency Q, exp(jQt), in which t is the 
time and j=f-l. 

The vertical column vector constructed by their real and imaginary 
parts is called the state vector and is denoted by {z} as follows: 

{z}={-w, t|J,My, Vz\-w, ii.My, Vz\ 1}
T- •(!) 

Real Imaginary Unit 

To apply the method of transfer 
matrices, the continuous member is 
idealized as a discrete series of 
masses and beams as shown in Fig.2. 
The external forces are considered 
to act upon the masses. 

Using the compatibility and 
equilibrium conditions at the beam 
i , the relationship between the 
state vector of the upper side of 
the mass i-1 denoted by {z};_1,and 
that of lowere side of the mass i 
denoted by {z}^, can be described by 
the matrix equation 

•j,4> 

l|J 
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L 
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Fig.l Coordinate 
system1*'1. 
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Mass-beam 
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{Z}VF].{Z}
U 

i-1 , 
•(2) 

in which [F]. is called the field transfer matrix and given by 
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•(3) 

In Eq.(3), E is the elastic modulus, A is the cross-sectional area, I is 
the second moment of inertia about the y-axis, L is the beam length 
between the two masses, and e is a constant number driven by considering 
the structural damping to the beam. The range of values is commonly 
indicated as e=0 ~ 0.015. 

By applying the same conditions to the mass i , the relationship 
between the state vectors {z}^ and {z}J is obtained as follows: 

{2}^[p].{z}J; >   

in which [P]. is the point transfer matrix and given by 

•(4) 
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•(5) 

In Eq.(5), m is the mass, / is the mass moment 
of inertia about the y-axis, and cz and c^are 
the coefficients of viscous damping in the 
direction of the z-axis and around the y-axis 
respectively, f and f. are amplitudes of the 
external forces in the direction of the z-axis 
and the external moment around the y-axis 
respectively. 

Fig. 3 shows the pile idealized as the 
mass-beam  system.  Transferring  the  state 

.[P], 

•tF], 

Bottom 

Fig.3 Idealized pile 
as mass-beam 
system1*). 
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vector {z} from the fixed base at A to the free end at B by using Eqs. 
(2) and (4), the following equation which gives the relationship between 
the state vector at the location A denoted by {z}a and that of the 
location B denoted by {z)g Is obtained: 

<*>B-[F]7[P]6[F]6 m^\Mh   =[U]BA(z}A 

The boundary conditions for this case are given as follows: 

for the location A : w  =0, <p =0, 
for the location B : Vz=0, My=0. 

(6) 

•(7) 

Substituting Eq.(7) to Eq.(6), My and Vz at the location A, and W and i> 
at the location B can be obtained, that is {z}fl and {z)B can be 
determined so as to satisfy the boundary conditions. The state vector of 
each location, therefore, can be calculated by using Eqs.(2),(4) and the 
state vector {z}^. 

EXTERNAL FORCE TERMS DUE TO WAVES 

In the following, the coordinate system 
is taken as shown in Fig.4. £ denotes the 
displacement of pile in the direction of the 
x-axis. u and u denote respectively the 
water particle velocity and its acceleration 
in the direction of the x-axis. 

Applying Morison' s formula and using 
the relative velocities to express the wave 
forces on the pile in the direction of the 
x-axis, the equation about the transverse 
vibration of pile is expressed as follows: 

pA(„+cie,+EI(,; YC„puD(u-t,) 

HC,-l)dJ(i-f„)+f> •(8) 

Wave 

Bottom 

Fig.4 Coordinate system 
of wave field. 

in which, p and pw are the densities of pile and water respectively, C\ 
is the damping coefficient, D is the diameter of pile, and Cp and Qif are 
the drag and inertia coefficients respectively. The lower indices of 5, 
t and z, indicate the differentiation 5 with respect to t and z 
respectively. 

Eq.(8) is nonlinear with respect to 5> however, if the assumption 
that U »£ is made, the Eq.(8) becomes linear as follows: 

(pA+KpwA) f„ + Ui + 2Col«l ) f,+£Jf„„ = C>l«l +C'uu •(9) 

in which, Cp=CDpwD/2, C^=CMp^A,   K-CM~1,     and K  is called the added mass 
coefficient. 

By using the small amplitude wave theory, the water level variation 
rij the water particle velocity u and its acceleration u at the location 
x=0 are described as follows: 
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7)= a cos at y    (10) 

u = aa ( cosh kz/s\nh kh ) cos of   ,    (11) 

" = -aa21 cosh kz/smh kh ) sin at .    (12) 

Substituting Eqs.(ll) and (12) into Eq.(9), 
and integrating Eq.(9) along the divided length 
Azj = zi-zi_l shown in Fig.5, mi and Cz^ included 
in [P]i of Eq.(5) can be obtained as follows: 

mi = ( pA+KpmA) Jz; , •(13) 

c,. = cldzj + 2C'B aa {( sinh kz.f — sinh kzj _ ^ ) 

/( Asinh kh )} I cos at I .      •(14) 

Li/2 

Li/2 

Li+i/2 

i 
Fig.5 Range of the 

integration. 

The wave forces acting on the mass i can be expressed as follows: 

/, m=Xt cos at I cos at | +y. sinaz ,    (15) 

in which, 

X, =C0 (a
29*/sinh ikh ) { (sinh 2kz(  -sinh 2*z_ ! ) / 2k + iz{ }  j    (16) 

7, =-C'„( a^/cosh £A ) ( sinh kzt -sinh *«,_!>   .    (17) 

If we expand the part cosat Icasat  |  in Eq.(15) into the Fourier 
series and take up to the third term, the Eq.(15) yields 

/,-(<)= T-X: cos at + ——X cos 3at • -X, cos hot +Y, sinot •(18) 

It can be recognized that the four terms (8/3Ti)Xi, (8/15n)Xi, (8/ 
105ir)Xi an^ Y± are generated as the amplitudes of external forces fzj_ 
included in [PJi of Eq.(5), and that % in this case becomes Q, 3H, 5fi 
and Q corresponding to each amplitude. Therefore, in order to obtain the 
actual state vector including the time part, each {z} must be calculated 
by using each fz± and fi^. Then each {z)exp(jQt) must be calculated, and 
the real part or imaginary part of iz)exp(jUt) must be chosen whether 
the phase of the terms of external force is cos or sin respectively. 
Finally, these must be composed. 

In the actual calculations, f-ih, I „tt2 and c^fi included in Eq.(5) are 
all neglected because they are ascertained as not greatly effecting the 
values of state vectors by performing some model calculations. Moreover, 
C\ in Czi of Eq.(14) is also neglected because of being small compared 
with 2C£>\u\ . 
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RESONANCE OF PILE DUE TO SMALL AMPLITUDE WAVE 

In order to explain some characteristics of the vibrations of a 
vertical circular cylinder, some calculations have been performed by 
using the method indicated above. The calculating conditions are 
determined by considering the scale of the experiments. 

The water depth h is 40cm. The diameter of the cylinder D is 3cm, 
the length 60cm, the specific density 1.12, and the elastic modulus E 
500Kg/cm2. It is inappropriate to always give the drag and inertia 
coefficients CD and Qy definite values, therefore they should be changed 
according to the various cases. Practically, however, it is difficult to 
choose appropriate values in each case because these values cannot be 
determined only by the Reynolds number and Keulegan-Carpenters' number3 
In this paper, therefore, 0^2.0 and CD=1.0 were ventured to be used as 
the design criteria6'in all cases. Moreover, the added mass coefficient K 
is fixed to 1.0 and structural damping is neglected as £=0. The cylinder 
is idealized by 6 masses and 7 beams as shown in Fig.3. The lengths of 
the beams are 5cm at the locations of the fixed bottom and top, and 10cm 

at the other locations. 
Fig.6 shows the characteristics of resonance, taking the horizontal 

axis as wave period T and the vertical axis as maximum values of the 
displacement at the top point in the direction of wave propagation. The 
dotted lines in this figure indicate that the waves exceed their 
breaking limit H/L=0.14. 

It can be seen from this figure that the resonance occurs at 
r=0.44sec and 1.32sec (=3x0.44sec) because of the first and fourth terms 
having the angular frequency a , and the second term having 3a in the 
right hand side of Eq.(18), respectively. However, as the wave height 
increases, the resonant effects at T=2.20sec (=5x0.44sec) become more 
indistinguishable at the displacement of the positive side (not of the 
negative side) because of the negative sign of the third term having the 
angular frequency 5a of Eq.(18). 

Generally speaking, the resonance of pile structures appears at the 
wave periods of odd number intervals' natural period in the case where 
the small amplitude wave theory is used. 

?max (•) 

2.5       3.0 

Fig.6 Characteristics of resonance due to small amplitude waves'^ 
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Fig. 7 shows the time variations of the 
displacement at the top point during a cycle 
of waves by successively changing the wave 
periods, t/T=0 and ±0.5 express the phases of 
the wave crests and troughs coming to the 
position of the cylinder respectively. The 
displacements are divided by their maximum 
value in each case to standardize them. In 
all cases, the ratio of the maximum inertia 
forces to the maximum drag forces are 2:1. 
and therefore, the high frequency components 
of the drag forces are not so large. However, 
it can be seen from this figure that high 
frequency vibrations appear in the time 
variations of displacement in the cases 
T=1.30sec or 1.35sec and 2.20sec because of 
resonant effects. 

RESONANCE OF PILE DUE TO STOKES WAVE 

An experiment concerning vibrations of a 
circular cylinder has been performed at the 
Department of Civil Engineering of Kanazawa 
University. The experimental apparatus is 
shown in Fig.8. The dimension of the wave 
tank used in this experiment was 50cm wide, 
60cm high and 14m long. A wave generator of 
the plunging type was installed at the end of 
this wave tank. A circular cylinder of which 
end the plate spring was attached was 
vertically installed 4.5m apart from this 
wave generator. The diameter of this cylinder 
D was 3cm, the length 60cm, the specific 
gravity 1.60, and the elastic modulus of the 
plate spring E 400Kg/cm2 . The dynamic 
displacements of this cylinder were measured 
at its top part, at which a copper plate was 
attached, by using the electromagnetic 
displacement meter of the non-contact type. 
The water depth h was 40cm. 

T=3.00 

Fig. 7 Time variations of 
the displacement 
at the top point 
of cylinder") 

Wave generator     Displacement meter 
,Wave (*r\^ ^£1 

, absorber    *—LL_    Wave —* ^*<J •Pile 

1/3 slope 60cm 

Base. s££ 
,Spring 

3.0m 4.3m 
14m 

6.7m 

Fig.8    Experimental  apparatus in the case of a pile. 
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In this experiment, the resonance appeares by the waves of which 
period is integer times natural period of the cylinder. This phenominum 
cannot be explained by using the small amplitude wave theory but the 
Stokes wave theory. This reason is that the inertia force contains the 
frequency terms of sinot, sin20t, sin30t, sin40t,.., and the drag force 
produces the frequency terms oosot, aos20t, aos3at, eos40t,... when the 
Stokes wave theory is applied to the Morison's formula. 

Fig.9 shows the comparrison between the experimental data and the 
calculated values by using the small amplitude wave theory and the 
Stokes wave theory. In this figure, it is recognized that the calculated 
values by using the Stokes wave theory agree roughly well with the 
experimental ones near the resonant point T=0.71sec which is two times 
the natural period of cylinder T=0.354sec. 

Fig .9 

Characteristics 
of resonance in 
the case of 
small diameter 
cylinder due to 
Stokes wave. 

0.6 
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o, 

O   Experi 
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amplitude wave theory 

\ 0.4 

lax 
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/      o 
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Xs 
H=4. 7cm 

£0-     OrJj 

O 
3            0 

0 •                 i 
0.4 0.6 1.0    1.2 

r (sec) 
1.4 1.6 

DYNAMIC RESPONSE OF PLATFORM 

In the case of a platform, the axial force N and its displacement u 
shown in Fig.10 should be introduced. Therefore, the state vector is 
denoted as follows: 

{z} = {u, -w, <jj,Aly, Vz,N\u, -w, \\i,My, VZ,N\ 1}T. '(19) 

Real Imaginary Unit 

The portion of the corner idealized as 
mass-beam system is shown in Fig.11, in which the 
corner transfer matrix [C] is newly introduced to 
change the direction of the nutral axis at the 
corner. The corner transfer matrix is indicated by 
Eq.(20) in the case that the nutral axis turns 270 
degrees clockwise. The point transfer matrix and the 
field transfer matrix are indicated byEqs.(21) and 
(22) respectively. The state vectores can be 
determined by multiplying these matices in the same 
manner as the vertical pile1). 

iN 
' u 

Fig.10 Coordinate 
system. 
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Fig.11    Mass-beam system 
at the corner. 
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The experiment has been carried out to the platform shown in 
Photo. 1 . Four vertical piles supporting the aluminum plate are made of 
rubber, and their diameter is 3cm, the elastic modulus 600Kg/cm2 . 
Idealizing this platform as mass-beam system as shown in Fig.12, the 
analyses have been performed by using the small amplitude wave theory to 
simplify the calculations. 

One of the model calculations about resonance is shown in Fig.13, 
in which the horizontal axis is the wave period T, and the vertical one 
is the maximum value of the displacement at the corner point B. The wave 
steepness is kept /iVL^O.l, and the added mass coefficient K is changed 
0, 1 and 2. From this figure, it can be seen that the resonant wave 
period decreases as K decreases from 2 to 0, and the value of the 
displacement becomes minimum at the wave period T=0.54sec. The minimum 
point of the displacement appears when the wave length becomes about two 
times distance between piles because the directions of wave forces 
acting on the piles become opposite with each other. 

-Z4.0CB1 
3.0CM  9.Den  9-OCB   3.0cn 

Piles 

Ilk 
Photo.1 Model of platform. Fig.12 Idealized platform 

as mass-beam system. 

£ max (cm) 

L 
1            1 

Added   mass   coef. K 

1   K=0 

K-2 

1 \k 
/ 

V '"-i"". 
* 

1.0 

T (sec) 

Fig.13 Characteristics of resonance of the platform. 



2962 COASTAL ENGINEERING-1984 

F1S- ll> shows the comparison of the time variations of the 
displacement at the point B between the experimental values and the 
calculated ones. From this figure, it is recognized that the calculated 
values shown by chain lines agree well with the experimental ones shown 
by solid lines. 

Cas e 1   • ICU. 

X 
) 

' *"-%V.., 
•s... 

^ / T-0.6?«C 

H =   8.2   w 

1 
v- 

-0.5       -0.26 

Cas e 7 
^ 

  c,l„. 

A •/ 

,2qm 

\\ 
j 

_.-X S 

Case 8 ^—^ 
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fig^JW Comparison of the time variations of displacement 
between the experimental values and the calculated. 
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DYNAMIC RESPONSE OF LARGE DIAMETER PILE 

In the case of a large diameter pile, MacCamy-Fuchs> diffraction 
theory can be applied to the equation of wave forces instead of 
Morison's formula in its calculations. On the occasion of this 
experiment, the circular cylinder shown in Fig.15 has been used. The 
diameter of this cylinder is 40cm and the experimental apparatus is 
shown in Photo.2. The dimension of the wave tank is 6.7m long, 4.3m wide 
and 55cm deep. The water depth was kept 35cm, and the displacement was 
measured by using the contact type displacement meter. The natural 
period of this cylinder is 0.56sec in the still water. 

Fig.16 shows the 
characteristic of resonance 
of this cylinder with 
comparing the experimental 
values with the calculated 
ones. From this figure it 
is recognized that the 
solid line calculated by 
using K=0 is closer to the 
experimental values than 
the broken line calculated 
by using K=l. This fact may 
indicates that the added 
mass coefficient K 
decreases from 1.0 with 
according to the increase 
in magnitude of the 
displacement. Photo.2 Experimental apparatus. 

4.0 
3.5 
7.7 

Large 
diameter 

pile 

E pring 
Fixed base 

Vniticm       Bottom 

Fig.15 Large diameter 
pile. 

Fig.16 Caracteristics of resonance. 
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METHOD OF STRUCTURAL-PROPERTY MATRICES 

EVALUATION OF STRUCTURAL-PROPERTY MATRICES 

The method of transfer matrices has been proved most effective for 
the analysis of harmonic vibrations. On the other hand, the method of 
structural property matrices is available for the non-harmonic 
vibrations. In this approach, the structure is assumed to be divided 
into a system of discrete elements which are interconnected only at a 
finite number of nodal point. The properties of the complete structure 
are then found by evaluating the properties of the individual finite 
elements and superposing them appropriately3) 

Fig.17 shows the beam element of number 
i , in which the displacements and rotations 
at node i and i-1 are denoted by 5i> Si-i 
and 6^, 9^_^ respectively. The deflected 
shape of the element £ (x) can be expressed 
in terms of its nodal rotations and 
displacements as follows: 

4-K- < 

fW=1J-1Wf1..1 +i'2WZ,+ti&>ei-i+tlW
ei   • • • (23) 

in which, ^n(x) (n=l,2,3,4) are the 
deflections developed in the element 
subjected to the unit nodal displacements 
which can be expressed as follows: 

• U, fj. 

vi>e, ,. -? k-i- 

Fig.17 Notation of forces 
and displacements 
at beam element. 

for C._j=i; V,W=i-3(x// ? + 2{x/i f 

for g±    =1; yr2<x)=3(x/lf-2(x/lf 

for e^j'lj V3W=*(1 -x/l? 
for 9i    =1; irltx)=(^/D(x/l -1) 

•(24) 

Here, the displacement vector of 1-th beam is defined in terms of 
its nodal rotations and displacements as follows: 

«, = <*«- •(25) 

The external forces and moments applied to a beam element are 
assumed to act only upon its nodes as shown in Fig. 17. The force vector 
of i-th beam is defined in terms of these forces and moments as follows: 

Ft = ( P], ,, M\. PI, M', ) •(26) 

When the force vector F±  acts upon the i-th element, the equation 
of motion about the i-th element is given as follows: 



PILE STRUCTURES ANALYSIS 2965 

LMliUi +[C],- i, + [#]; «,=f,. •(27) 

in which, [R]^ [M] . and [C]^ are called the stiffness matrix, the mass 
matrix and the damping matrix respectively. By applying the principle of 
virtual work to the element, these matrices can be evaluated as shown in 
Eqs.(28), (29) and (30) respectively, in which,^'=d2^/dx2

t Jn and ~c is 
the mass and the damping coefficient per unit length which can be 
calculated from Eqs.(13) and (14) respectively. Moreover, the force 
vectors can be evaluated by using the Morison's formula, and however, 
the moments may be neglected when their magnitudes are small. 

Evaluating the equations of motion for the individual finite 
elements and superposing them, the equation of motion for the complete 
structure can be obtained. The time variations of the displacement 
vectors can be calculated from this equation. 

[*], = [ El //^V^^^ff.) 
6          31       -6 31 

2l2     -31 V 

6 -31 

Sym. 21' 

IS I! 7        JL        _  13 
35        210'       70 420 

-L n    M i - X 
105'       420 ' 14C 

ii _ 11 

Sym. 
35 210 

105 

(29) [Af],=     mi •^jxjrkdx\    ={ml) 

:C],=[*J[Vy*»*=] r{Z)XM\ (30) 

•(28) 

TIME VARIATION OF PILE DISPLACEMENT 

Some experiments and calculations have 
been performed for the small diameter 
cylinder, of which end the plate spring is 
attached. The length of this cylinder is 
60cm and the diameter is 4cm. The flexual 
rigidity of the plate spring El is 1.93xl05 

Kg.cm2. The natural period of the cylinder 
was changed appropriately by arranging the 
length of plate spring. In the experiment, 
the water depth was always kept 40cm. In the 
calculations, this cylinder is divided into 
seven elements as shown in Fig.18. The 
Newmark's g method has been applied to 
calculate the time variations of the 
displacement vector with selecting 0=0.25. 

Beam 
element 
number 

Spring 

Fig.18 Division of pile 
into elements. 
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Fig.19 shows the time variations of the displacement at the 
cylinder top, in which the dotted lines and solid lines indicate the 
experimental values and the calculated ones respectively. In Fig.19(a), 
the displacements become larger to a certain magnitude as the time 
proceeds, because the wave period r=0.84sec is close to the natural 
period 0.80sec. In Fig.19(b), the displacements are beating, because the 
wave period T=0.92sec is slightly different from the natural period. In 
Fig.19(c), the calculated values agree well with the experimental. 

Fig.20 is one of the examples applied- to the case of hyperbolic 
waves, in which the upper figure shows the water level variation T\ and 
the lower one is the displacement g calculated from n. In the 
displacement, the natural vibrations are generated by the high frequency 
component waves included in the wave crests. 

t (sec) 

(a) T=0.84sec, H=1.9cm, 5max=4.85cm. 

t (sec) 

(b) T=0.92sec, tf=4.1cm, 5max=4.91cm. 

•'f\     /!Y.       y*"\      /\ 5-° /^ f\, 10.(^\\ 
•          v'         '"'           V '•••' t (sec)'" 

\y    ,3'° 

(c) T=1.18sec, tf=4.6cm, Cmax=1.98an. 

Fiq.19 Time variations of displacement of small diameter pile. 
(Solid line: Calculated. Dotted line: Experiment) 

Fig.20 Time variations of hyperbolic waves and 
the displacement of small diameter pile. 
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In the case of irregular waves, £ can be calculated only from ri by 
using the linear filters''. Fig.21 is one of the examples of irregular 
waves, in which, the calculated values of the displacement shown by 
solid line agree well with the experimental ones shown by dotted line. 

Fi ).21 Time variations of displacements in case of irregular wave, 
(n: water level variation, £: displacement, F: wave force) 

CONCLUSIONS 

The harmonic vibrations of structures can be calculated by the 
method of transfer matrices. On the other hand, in order to calculate 
the transient response with considering initial conditions or the random 
vibrations induced by irregular waves, the method of structural-property 
matrices should be used. In these calculations, the added mass 
coefficient should be given an appropriate value in the range from 0 to 
1 in accordance with the magnitude of a displacement, and also the 
damping coefficient should be determined with considering the 
interaction effect between structures and waves. 

The resonance of a small diameter pile occures at the wave periods 
of integer times natural period, which has been confirmed by the 
experiments and the calculations. The time variations of the 
displacement of structures can be calculated correctly by using the 
matrix methods shown in this paper. 
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