CHAPTER ONE HUNDRED FORTY NINE

Improved Formulas for Estimating Offshore Winds

S. A. Hsu*®

Abstract

On the basis of many pairs of simultaneous measurements of wind

speed onshore, U and offshore, U in areas ranging from Somalia,

LAND’ SEA”
near the equator, to the Gulf of Alaska, and under conditions ranging

from breeze to hurricane, it was found that for operational use USEA =

1/2 -1 . =
3.93 ULAND foz:.ULAND <10 m s (or 20 kt); and USEA = 1.24 ULAND for
ULAND Z210ms ~. These formulas were developed mainly from theoretical

considerations and were verified by field measurements.

1. Introduction

Differences in onshore and offshore wind speeds have long been
known to exist [see, e.g., (2), (15), (16)]. Marine meteorologists in
the weather services are required to forecast offshore winds. Many
studies related to coastal marine sciences and engineering require wind
data or estimates for offshore regions. Yet in situ measurements over
water are often lacking. Traditionally, wind measurements over land,
preferably near coasts, have been used to estimate offshore winds. How-
ever, hecause simultaneous oushore and offshore observations do not
always exist, systematic studies such as simple comparisons between
these two environments are also lacking. Only recently the U.S. National
Oceanic and Atmospheric Administration (NOAA) deployed a network of
buoys for longer term measurements over the continental shelf as well as
farther offshore. All of these buoys are located in or near U.S. coastal
waters. However, there are still vast regions in other parts of the

world where such a network does not exist.
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It is the purpose of this paper to synthesize various data sources
and to provide simple formulas for operational use. Basic developments
have been given in (9). Furthermore, because of the availability of wind
difference measurements during hurricane conditions, as shown most re-
cently by (12), the formulas originally proposed by (8) have been im-

proved and extended from breeze conditions to hurricane-force winds.
2. Formulas

In order to understand and estimate wind speed differences across
the coastal zone, two models, one theoretical and another semi-
empirical, have been developed and verified using available data sets

(9). The following discussion is based mainly on that paper.

Assuming that (1) mean horizontal motion occurs perpendicular to
the coast and (2) the geostrophic wind does not change appreciably at the
top of the planetary boundary layer (PBL), the equation of motion in the
direction of the wind can be reduced so that

U C 1/2

H
SEA EFA D LAND
={ -5 (1)

T 1
Yeanp \"1anp ©p sEa

where U, H, and CD are wind speed, height of the PBL, and drag coef-
ficient, respectively. Subscripts LAND and SEA stand for onshore and

offshore environments, respectively.

Eq. 1 is based on equations of motion, which work fairly well for
synoptic weather systems typically more than one day in time scale and at
least 1,000 km (1 km = 0.54 nautical miles) in horizontal scale. These
systems include anticyclones (high-pressure systems), monsoons, and

1 1

trades. Their U (1ms * =

1.94 kt).

1.ANp Values are generally less than 10 m s

According to Large and Pond (10), the drag coefficient, reduced to

10-m height and neutral condition, is independent of stability

X > sEa’
and fetch (for fetch/height <800) but increases with wind speed above



2222 COASTAL ENGINEERING — 1984

10 m s*l. Using their measurements and many deep-water results of

others, Large and Pond (10) obtained

< -1
1.2 4 - U <1ll ms
102 ¢ = 10 <. < -
D SEA 0.49 + 0.065 Ujgr 11 = 0Ujg = 25 m s (2)

where U10 is the wind speed at a height of 10 m over the water.

For typical low-relief topography and low mountains on land (peaks

< 0.5 -~ 1 km), Garratt (4) obtained

- -3
Cp ranp = 10 x 10 (3)
where Cp ;,op 18 the drag coefficient at a height of 10 m over the land
surface.

According to Hsu (6), variation of HLAND is much more pronounced
than HSEA because of larger diurnal variation in heating and cooling over
land than farther offshore. This reasoning shows that the most important

variable in Eq. 1 is HLAND'

Following Blackadar (1), Plate (11), and many others, during neu-

tral condtions
W02 “
LAND £

where U, is the friction (or shear) velocity and f is the Coriolis

* LAND
parameter.

Note that, by definition,

2
c [P 1am )
D LAND U np
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Substituting Eq. 5 into Eq. 4, one gets

_0.2, /2,
Hanp = 7F ° % rawp” Vrawp - (6)
From Eq. 6, Eq. 1 can be written as
) . 1/2
Usea £ Hepa * b rawp
U - 172 7
LAND  \0.2 * Cp'ranp * Yranp®  Cp sEa

In other words, for a given coastal zone, if one treats values of f,

HSEA’ CD LAND and CD SEA 28 known factors, as discussed above, then Eq.
7 becomes
U
e
LAND
where
. . ~l/2 1/2
£ HSEA CD LAN]
Aoz -c.
: D SEA (9)
For U <11 m st (orv Slomsh, ¢ =1.2x 107 (10). Tn
SEA - E?ND > "D SEA ! !
mid-latitudes, f = 10 s ~. Adopting the common value of HS = 335 m
from Davenport [(12); see also Plate (11)] and ¢y LAND — 10 x 10 ~ from Eq.
(3,
we have

A=3.74 a2 . s_l/2 (10)

For weather systems such as hurricanes, the equations of motion do
not work well because the centrifugal force is not considered. Under
these conditions, the semi-empirical formula based on the power law wind
distribution in the PBL [see, e.g., Plate (11)] may be employed. The

power law states that

Z
T (ﬁ) (11)
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where U at height Z and U, at H are the velocity within and above the

H
atmospheric planetary boundary layer (PBL), respectively. The thickness
of the PBL is H, and P is an exponent [for details see, e.g., Sedefian

(13)1.

If we assume that UH on top of the PBL does not change appreciably

across the coastal zone and that Z = 10 m, Eq. 11 becomes

P LAND
Usea 10" A Fraw (12)
i P LAND * P SEA
LAND 10 Hopo

Adopting common values from Davenport [(2); see also Plate (11)],

= 0.10 (at sea), P = 0.16 (for flat and open country), H,up =

PSEA LAND

370 m, and HSEA = 335 m, we find from Eq. 12 that
U
SRR =195 (13)
LAND

Eqs. 8 and 13 are our basis for data analyses.

3. Data Analyses

Many pairs of onshore and offshore measurements have become avail-
able recently [see Hsu (9)]. They are summarized in Table 1. Ratios of
USEA/ULAND were analyzed as iﬂfunctlon of Uy ,yp+ Note that in Hsu 9
wind speeds were below 18 m s ~.

The most recent data set was provided
by Powell (12), who included hurricane-force wind measurements obtained
during Hurricane Frederic in 1979. Although there are differences in
measuring distances between onshore and offshore stations as well as
lateral distance from the eye of the hurricane, the measurements are

simplified here as shown in Table 1 for operational use.

4. Results

The results are shown in Fig. 1. It is interesting to note that
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. ~1 :
LAND 1 below 10 m s the ratio of USEA/ULAND follows the generil

. . > -
trend of Eq. 8§, whereas this ratio is a constant for ULAND - 10 ms ~.

when U

On the basis of Eq. 8, the dashed curve in Fig. 1 indicates that

= 1/2
Uspa = 3.93 Upypn (14)
Note that the value of A (= 3.93 ml/Z . s_l/Z in Eq. 14) is in good
agreement with the typical deduction, as shown in Eq. 10. The large

standard deviation under low wind speed conditions is due to large varia-—

tions in HLAND and HSEA

the coastal zone [see Hsu (6)]. In addition, averaging time, sampling

because of large temperature differences across
rate, and heights were not uniformly reported in all pairs.

. . s > -
Under high wind speed conditions, say ULAND ~ 10 ms 1, we have

Ugpa = 126 Uy (15)
as shown in Fig. 1. This equation is in excellent agreement with Eq.
13.

5.  Concluding Remarks

On the basis of many pairs of simultaneous measurements of onshore
and offshore winds in regions ranging from the tropics to the Arctic and
under forces ranging from breeze to hurricane, it is found that, for
operational use:

. . -1
For wind speed over land, i.e., ULAND <10 ms ~,

1/2

U A s 3.93 ULAND

SE

> -1
and for ULAND 10 m s

U =1.24 U

SEA LAND®

The above formulas are useful over low-relief (< 0.5-1 km in height)

and open coasts. They may not be applicable for mountainous or cliffy
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coast areas. Also, atmospheric mesoscale systems such as low-level jets
under special conditions [see Hsu (7)1, land- and sea-breeze systems
(5), and coastal fronts during the winter season were not taken into
account. Although there is still large scatter in the data points as
shown in Fig. 1 and many smaller scale meteorological systems were not
included because of the different physics involved, it is felt that for
engineering applications these simplified formulasshould be useful as a
first approximation to this complex problem of onshore-offshore wind

differences.
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Fig. 1. Ratio of USEA/ULAND as a function of ULAND‘ Data were based on Table 1. Vertical bars are the

standard deviation, and numbers bside the mean point are the areas incorporated in the computations.
Values on the right-hand side of the equations are mean and standard deviations, respectively.
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